Application of sexed sperm for dairy cattle production

Professor Chis Maxwell Professor of Reproductive Biology

> Faculty of Veterinary Science The University of Sydney

The University of Sydney

Published by the AMERICAN SOCIETY OF ANIMAL SCIENCE

1971

PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK JULY 1970

Factors affecting application of sex preselection in livestock animals RH Foote and P Miller

АТ	SEX RATIO BIRTH—PROSPECTS FOR CONTROL A Symposium	
	Descend og de ander om antiget og porsen ar telsen	
	0	

- The degree to which sex ratio is altered
- The fertility or number of progeny/female per year
- The number of progeny per top sire possible from processed sperm
- The direct cost of the sex control technology
- The opportunity to combine sex control with other procedures
- Convenience
- Traditional ethical and moral considerations

Pre-requisites for application of sex-sorted sperm

- Sorting protocols
- Sort purity
- Sperm quality
- Availability

Sex Determination Possible Methods

- Embryo biopsy and PCR (followed by ET)
- Selective abortion (fetus or embryo)
- Pre-selection of X or Y spermatozoa:

-Protein gradients (motility)
-Density gradients (density)
-Electrophoresis (surface charge)
-Immuno-separation (surface antigens)
-Flow cytometry (DNA). Beltsville sperm sexing technology (Johnson & Pinkel, 1986)

In mammals sex is determined by the heterogametic sperm population

X-and Y-chromosome differ in size

Differences of the relative DNA-content between X-and Y- chromosome bearing sperm

2.9%

4.2%

3.8%

3.6%

Basic principles

- DNA staining distinguishes X and Y sperm
- Modified flow cytometer sorts two sperm populations according to fluorescence

Orientation of sperm to the laser

Flow cytometric principles

Improved sperm orientation

Sort histograms

Comparison of normal and high speed flow cytometer				
EPIC	CS V/753	MOFLO high speed Sorter		
Pressure	20 psi	52 psi		
Flow Rate sperm/sec/sex	2000	~ 30000		
Sort Rate sperm/sec/sex	100	~ 6000		
No. of sorted sperm/h/sex	0.35 x 10 ⁶	15 x 10 ⁶		

Factors influencing sorted sperm viability

INSULTS

- High dilution
- Nuclear staining and incubation
- Mechanical forces
- Exposure to UV laser & electric charge
- Projection into collection medium
- Post-sorting centrifugation
- Freezing and thawing

PROTECTION

- Special media, including antioxidants
- Egg yolk and seminal plasma

Factors influencing sorted sperm viability

PRE- and POST-SORT HANDLING

- Time between collection and sorting
- Time between sorting and centrifugation
- Storage fresh/freezing-thawing protocol and insemination

Historical development and application of sperm sexing

Sex Determination – History

- 1982: analysis of sperm DNA difference
- 1987: separation of sperm nuclei
- 1989: pre-sexed offspring (rabbits)
- 1993: pre-sexed calf born (IVF & ET)
- 1996: pre-sexed lamb born (ICSI & ET)
- 1997: pre-sexed calves born (Fresh AI)
- 1997: pre-sexed lamb born (Fresh AI)
- 2002: pre-sexed lambs born (Frozen AI)
- 2003: pre-sexed lambs born (Frozen-sexed-refrozen)
- 2004: pre-sexed calves (AI & MOET)
- 2008: pre-sexed calf born (Frozen-sexed-refrozen AI)

Efficiency of sperm sorting Single insemination dose One desired sex

Species	Dose (x10 ⁶) ¹	Pregnancy ²	Time ³	Time ⁴
Cattle	2	10-20%↓	8 min	3 min
Sheep	20	Similar	1 hr	25 min
Horses	25	Similar	1.6 hr	40 min
Pigs	50	40-50%↓	3.3 hr	1.3 hr

¹ Live sperm

² Compared with unsorted sperm and conventional deep uterine AI, all sorted-frozen-thawed

³ Sort speed of 15x10⁶ sperm/h

⁴ Maximum theoretical sort speed current technology (36x10⁶sperm/h) (Garner & Seidel, 2003)

Application and commercialisation in dairy cattle

Patents and animal licenses

XY INC.

FRANÇAIS

Headquartered in DeForest, Wisconsin, ABS Global, Inc. is the world-leading provider of Incorporation of the second se

be used for artificial insemination of bovine heifers that are not part of a timed A.I. synchronization program or being flushed for embryo transfer.

For specific sires and availability, contact your local Genex representative.

Cooperative Resources Ri International

INTERNATIONAL OVERVIEW OF PRODUCERS OF SEXED BULL SEMEN

Rath and Johnson 2008, Reprod Dom Anim 34, 338-346.

Why sex dairy bull sperm?

- Increase supply of replacement heifers
 - Reduce heifer sale and purchase prices
 - Reduce introduction of heifers into closed herds
- Increase availability of heifers for export
- Increase efficiency of progeny testing
- Increase efficiency of IVF programs
- Increase efficiency of MOET programs
- Include heifers in genetic selection and accelerate genetic progress
- Increase number of superior bulls
- Reduce cases of dystocia

The quality (fertilising ability) of sex sorted sperm and its availability are decisive factors for its wide spread application in dairy cattle

Natural sperm selection

2 million instead of 20 million sperm

Summary of pregnancies after Al with sex sorted frozen bull sperm (Garner and Seidel 2003)

Pregnancy rate

(%)

n = 16 trials Sperm dose:

sexed: 1 – 3 x 10⁶/uterine body or horn control: 20 x 10⁶/uterine body

	Sexed	Unsexed	p-value
Pregnancy rate			
No. of AIs	157	149	≤ 0.001
No. pregnant	33	69	
% pregnant	21	46	
Calving rate			
No. of AIs	157	146 ^a	< 0.001
No. calved	32	65	
% calved	20	45	
Gender of calves			
No. calves ^b	33	67 [°]	≤ 0.01
No. female calves	27	33	
% female calves	82	49	
Health of calves			
No. calves ^d	31	62	> 0.05
No. healthy calves	31	60	
% healthy calves	100	97	

Table 1. Pregnancy and calving rates after AIs with sexed or unsexed sperm as well as distribution of gender and health of the calves born

Andersson et al. 2006, Reprod Dom Anim 41, 95-97.

New sorting and processing protocols

Klinc et al. 2007, Reprod Dom Anim 42, 58-62.

Motility of thawed sperm during incubation at 37°C

Klinc et al. 2007, Reprod Dom Anim 42, 58-62.

PREGNANCY RATES WITH SEXED BULL SPERMATOZOA USING SEXCESS[®]

	Unsorted Control	Sexcess®
HF-Bull (SL)	75.5%	73.5%
Limousine (SL)	79.2%	73.3%
Limousine (D)	71.4%	73.9%
+/total	89/116	85/116
Total	76.7%	73.6%

Thawing: 37°C 20 sec AI: 12-24h after onset of heat; AI into body or distal horn

Klinc et al. 2007, Reprod Dom Anim 42, 58-62.

COMPARATIVE DATA OF EJACULATES FROM A BULL, SORTED COMMERCIALLY AND UNDER OPTIMAL CONDITIONS

	0h	3h	6h
Mot (%) commercial	58	27	0
Mot (%) research	70	60	60

Abnormal sperm: post sort/post thawing commercial: 11% Abnormal sperm: post sort/post thawing using experimental: 7%

Sort purity commercial: 88% Sort purity experimental: 98%

Rath and Johnson 2008, Reprod Dom Anim 34, 338-346.

MINIMAL REQUIREMENTS OF SEMEN QUALITY AFTER SORTING

- Post thaw motility: (CASA; fluorescent image) > 50%
- Thermo Tolerance Test: (6h; 37°C;CASA; fluorescent image) > 30%
- Morphological abnormal sperm: < 20%
- FITC-PNA/Syto 17/PI: > 70% intact
- Sort purity: > 90%
- Sperm number/straw: > 2 million intact sperm

Rath and Johnson 2008, Reprod Dom Anim 34, 338-346.

STATUS OF SEXED SPERM APPLICATION

- Fertility
- Sperm quality
- Sort purity
- Sort speed
- Usability of bulls
- Economic benefit

variable

needs improvement

high

improvable

improvable

depends on fertilizing abilities and pricing conditions

Economics

Economics of sexed sperm in commercial dairies

Figure 1: Difference between control and sexed semen when using lowest and highest estimate for each parameter. Base line represents the difference (€19.6) when Tables 1 using each parameter's best estimates (as presented in

Ettema et al. 2007, Western Dairy News 7, 67-68.

Example of a premium farm in Germany

	Pregnancy unsorted		Pregnancy sorted		
Insemination index	1	.5	2.0		
Semen costs/Pregnancy (€)	40	.00	129.35		
Costs /AI	9.	75	13.00		
AI costs/calf	49	49.75		142.35	
	male	female	male	female	
Sex ratio	53	47	10	90	
€/calf/sex	120	300	120	300	
€/calf in average	204.60 282.00				
Profit/sexed calf	77.40				
additional cost with sexed sperm/calf	alf 92.65				
deficit per calf -15.25 €					

Rath and Johnson 2008, Reprod Dom Anim 34, 338-346.

of sexed semen.

Ettema et al. 2007, Western Dairy News 7, 67-68.

Future development: Sexing of already frozen cattle semen

Advantages

- Sexed sperm is currently available only from bulls located at sex-sorting labs.
- Limited no. bulls available for sexing due to cost of each facility and the small number of labs worldwide.
- Sex-sorting already frozen semen would allow the use sexed sperm from any bull anywhere in the world.
- Over 1,000 lambs already born from this procedure.

In vitro results - cattle

Frozen-thawed non-sorted, Control or frozen-thawed, sex-sorted bull spermatozoa either refrozen (FSF) or incubated post-sort at 37C (FSFresh)

Al of frozen-thawed, sex-sorted, refrozen-thawed sperm

TYPE/DOSE SPERM	NO. HEIFERS INSEMINATED	NO. HEIFERS PREGNANT	Monitor growth of pre-ovulatory
FSF 4 × 10^6	12	0 (0%) ^a	follicle and inseminate close to
FT (control) 4×10^6	8	6 (75%) ^b	time of ovulation (Trial 1)

Increase sperm dose and AI 24h post-standing heat + introduce FSFresh treatment (Trial 2)

TYPE/DOSE SPERM	NO. HEIFERS INSEMINATED	NO. HEIFERS PREGNANT
FSF 10×10^{6}	7	1 (14.3%)
FSFresh 4 × 10^6	7	0 (0%)
FT (control) 10×10^6	7	4 (57.1%)

First calf born following artificial insemination of frozen-thawed, sex-sorted, refrozen-thawed sperm

Xena born 10 August 2008

Conclusions

- Sorting technology is available for application in dairy cattle.
- However, significant attention is required on sperm quality for commercial application.
- Sex sorting of already frozen semen may be available in the future.

Acknowledgements

Funding: XY Inc., Gardiner Foundation, Bioniche

Colleagues (former & current):

- Academic colleagues: Gareth Evans, Larry Johnsin, Detlef Rath, Juan-Maria Vazquez, Chris Grupen, Ros Bathgate, Simon de Graaf.
- Technical assistance: Monica Ruckholdt, Steven Burgun, Kim Heasman, Byron Biffin and Keith Tribe
- Postgraduate students: Shelley Underwood, Kiri Beilby, Tamara Leahy, Zamira Gibb, Fiona Hollinshead, Jenny Clulow.

