Pig genetics in France

Catherine Larzul

INRA Department of Animal Genetics

Jean-Pierre Bidanel, Thierry Tribout

INRA overview

http://www.international.inra.fr/

INRA National Institute for Agricultural Research

INRA carries out mission-oriented research for

- -high-quality and healthy foods,
- -competitive and sustainable agriculture,
- -a preserved and valorised environment.

Research area

Research is guided by developments in scientific fields and focuses on worldwide challenges related to:

food and nutrition,

the environment and land use facing the world of agriculture and agronomics today.

```
Challenges are:
```

climate change, human nutrition, competition between food and non-food crops, the exhaustion of fossil resources and appropriate

land

INRA

INRA produces knowledge, innovation and know-how for society

INRA assists the development of industries and regions of France: it actively participates in a transfer partnership while seeking the public good

INRA lends its expertise to public decision-making.

Some figures

8500 staff:

- 1,839 researchers and 1,891 doctoral students
- 1,500 foreign researchers and students come every year.

14 research divisions, 19 regional centres, strong scientific partnerships.

49 experimental units with a total surface area of 10,000 ha and 94,000 animals.

INRA is ranked 2nd in the world and 1st in Europe in agricultural sciences, and plant and animal sciences.

Animal Genetic Division

Pig genetics

Ces races locales bénéficient d'un programme national de conservation pour le maintien de la variabilité génétique

A national program insures the preservation of the genetic variability of those local breeds

Pie Noir du Pays Basque

Gascon

Cul Noir Limousin

Porc de Bayeux

Porc Blanc de l'Ouest

Nustrale

Crédits photos: IFIP, ADN, GENE+, NUCLEUS, PEN A

DE L'ALIMENTATION DE L'AGRICULTURE ET DE LA PÉCHE

Avec le soutien financier de FranceAgriMer.

FOOD & NUTRITION
AGRICULTURE
ENVIRONMENT

Characterisation

Size of the populations

	Basque	Bayeux	Gasco n	Limousin	Nustrale	Blanc de l'ouest
Sows	136	51	796	148	109	153
Boars	24	15	102	40	12	28
Breeders	29	26	75	39	29	69

Prolificacy: 8 - 11 piglets

http://www.agroparistech.fr/svs/genere/especes/porcins.htm

Use of local breeds

Very localised production
Low intensive production systems
Outdoor production systems
Heavy weight slaughtering
High quality products

- -fresh meat
- -dry cured ham/sausage

Conservation

In charge

- -breeder associations (LIGERAL)
- -IFIP (Pig technical Institute)
- Genealogy recording and management
 - -mating plan on a family base
 - -limit inbreeding rate
 - -no selection breeding scheme
- Cryopreservation of boar semen national cryobank

Outline

- Genetic improvement of pigs
 - General principles
 - -Selection goals/production characteristics
 - -Controlling the efficiency of pig breeding plans
 - Pig genetics INRA Research activities

Pig breeding schemes - general principles

Pyramidal structure

The example of France

Pig breeding schemes - general principles

The French national pig breeding scheme

Four populations

2 female populations

<u>Female</u> <u>Large White</u>

4500 sows

<u>French</u> <u>Landrace</u>

2500 sows

<u>Male</u> <u>Large White</u>

450 sows

<u>Piétrain</u>

1100 sows

Main characteristics of pig production

Homogeneity of production conditions

- F A dominant production system
- Objective: production of (reasonable) quality meat at the lowest price
 - ✓ Standardised housing, feed & management conditions
- Some exceptions
 - ✓ Example of local pigs production systems

Homogeneity of the pig produced

- Slaughtered at a given target weight
 - ✓ 110 kg on average
 - ✓ Some "heavy pig" chains (local pigs)

Conversely, pig meat is consumed in many different ways

- Fresh meat
- Many processed products
 - ✓ « cooked » or « dry » ham & sausages, "ready to use" dishes,...

Components of the economic efficiency of pig production

Production costs

2 main groups of traits

- 1. Production cost of piglets (up to 25 kg)
 - > Is mainly a function of herd numerical productivity
- 2. Cost of the growth period
 - > Is a function of:
 - Growth rate (cost of housing)
 - > Feed conversion ratio (amount of feed consumed)
 - Mortality

Usage value of the slaughter pig

- 1. Quantitative aspect = dressing percentage
- 2. Qualitative aspects
 - Carcass composition (lean meat content)
 - Meat and fat quality (not paid to farmers except boar taint)

Traits of economic interest

FEED EFFICIENCY

Food conversion ratio = amount of feed (kg) necessary for 1 kg live weight gain

Considerable economic impact
Production costs
In weaning - fattening herds

Individual measurement:
Automatic feeders

Others

Feed

Traits of economic interest

Carcass traits

Traits of economic interest

Carcass traits
Estimation of carcass composition
Through ultrasonic backfat depth

Economic consequences of product quality

For farmers:

no payment for meat quality
Some meat defaults can be forbidden

For slaughterhouses:

Weight losses through exudation (1 - 3%)

For distributors:

Weight losses through exudation (1 - 3%) Selling difficulties

For processing units

Weight losses at cooking (1 - 10%) Losses when making slides (0 - 50%) Losses when conservation is poor

For consumers:

Weight losses at cooking (1 - 10%)

Meat technological quality criteria

Post mortem evolution of pH

```
Imbibition time
Exudation losses
Cooking losses
Glycolytic potential (GP)
% water
Chemical
composition
```

... measured on different muscles

Technological yields (Napole, cooking or drying %) Fibre characteristics

Fat technological quality criteria

Firmness
Caractère rance
% water, % lipids
Fatty acid composition (polyunsaturated/saturated)

... Also characterize dietetic and organoleptic qualities

Boar taint (androstenone, skatole)

Meat organoleptic quality criteria

Intramuscular fat content (% IMF)
Shear force

... usually measured on the loin

Tenderness Juiciness Flavour

Consumer panel tests

Outline

Genetic improvement of pigs

- General principles
- -Selection goals/production characteristics
- -Controlling the efficiency of pig breeding plans
- Pig genetics INRA Research activities

Definition of breeding goals

What time interval should we consider?

Minimum interval

> Depends on the genetic gain diffusion structure

- > In general, 3 to 5 years = genetic lag
- + "economic" lag in a competitive situation
 - > = temps necessary for buyers to perceive changes

The French national pig breeding scheme Breeding goal: relative weights

FOOD & NUTRITIO 1/9%
AGRICULTURE
ENVIRONMENT

Future breeding goals

How to integrate:

- · Behavioural traits
- Environmental effects of animal production (including contribution to global warming)
- Robustness / resistance to diseases
- Environmental sensitivity

• ...

The French national pig breeding scheme

on-farm performance test

production traits

Young male and female candidates

- age at 100 Kg

- backfat thickness at 100 Kg
- Loin depth (male lines)
- (Meat quality)

« reproduction » traits

- numbers of live born piglets
- number of functional teats

station performance test

slaughtered sibs from young candidate males

- average daily gain
- daily feed intake
- feed conversion ratio

- dressing percentage
- carcass lean content
- meat quality index

The French national pig breeding scheme

Information flow

Genetic evaluation of pigs Production traits

- Combined on farm station evaluation since 1996
- Multiple trait (10 / 11 traits) evaluation
- Monthly evaluation, independently for each breed
- Collaboration between INRA IFIP
- Use of PEST software
- -Breeds concerned: Large White, French Landrace, Piétrain (Large White male and female lines are jointly evaluated)

Outline

- Genetic improvement of pigs
 - General principles
 - -Selection goals/production characteristics
 - -Controlling the efficiency of pig breeding plans
 - Pig genetics INRA Research activities

Checking the efficiency of breeding schemes Trends for litter size at the selection level

- Selection dans in female lines
 - Increase of litter size
 - Increase of stillbirth and post partum mortality

Checking the efficiency of breeding schemes Trends for litter size at the production level

Checking the efficiency of breeding schemes Control of terminal products

- Sample of slaughter pigs from different breeding organisations compared in an official test station
- Results officially published by the ministry of Agriculture

Ex: 24rd TP test

Growth index; 10 points = 2.30 euros

Carcass index; 10 points = 3.08 euros

Meat quality index; 10 points = 1.16 euros

Outline

- Genetic improvement of pigs
 - General principles
 - -Selection goals/production characteristics
 - -Controlling the efficiency of pig breeding plans
 - Pig genetics INRA Research activities

Variability of genome structure and functionning

Research activities

- 2 thematic field:
 - Genetic determinism of traits of interest
 - Population gestion
- Activities
 - Experimentation
 - Methodology
 - Breeding scheme for french national breeds
- Breeds
 - Large White, Landrace, Piétrain, Duroc
 - Synthetic lines (sino-european)
 - Meishan, local breeds

Pig research facilities

Animal Ressources

- Experimental unit
 - National breeds
 - Selection experiments
 - Crossbreeding
 - Fine phenotyping
- Commercial breeds (IFIP / OSP)
 - Central control station
 - Farm control

Genetic variability

- Polygenic variability
 - New traits
 - Data integration
- QTL Cartography (fine)
 - High throughput genotyping
- Gene study
 - Comparison of genotypes
 - Functional genomic

Genetic determinism studies

Traits of interest

- Efficiency: growth rate, feed efficiency (cost, manure)
- Meat quality: homogeneity, prediction, castration
- Adaptation : maternal abilities, piglet survival, heat tolerance, robustness
- Health/Biomedical: immune response, melanoma

Methodology

- Modelisation / Polygenic variability+ QTL / Consequences of sélection / relations between traits
- QTL / comparaison of genotype

Feed efficiency

- Divergent selection experiment for residual daily feed intake
 - Direct and indirect responses
- QTL location for feed efficiency and feed behaviour

Response to selection

Low line vs high line

- ➤ RFID(2 écarts-types génétiques) ☺
- ─ growth rate
- ★ fatness®
- ─ ultimate pH (meat quality)
- ─ intramuscular fat

Growth and ingestion modelisation

BW= $f(age; B_{Gompertz}; age_{110kg}; PV_{65j})$ **CMJ** = $a_{conso} \times BW^{bcon}$

Meat quality predictors

- Expression data (transcriptomic)
 - Relationship with meat quality(sensory, WHC, IMF)
 - Carcass choice
- Hyerarchisation of différents factors
 - Meta-analytis
 - Gene Hal, preslaughter conditions

Relationship between traits

MA: Halothane gene effect on pHu

Effect-size = pHu(NN) - pHu(nn)

- ❖ 2 studies among the 11 combined studies concluded that pHu (nn) is higher than pHu (NN).
- ❖ 5 studies among the 11 combined studies found a non-significant effect of the halothane gene on the pHu.

Fatness QTL mapping

- Foundating study: PorQTL
 - F2 (MS x LW)
 - Lots of QTL > rough location
- Following studies
 - refine QTL location (growth, carcass composition)
 - Confirm 4 QTL locations in commercial populations

Meat quality QTL: Example of GWAS

■ 2 QTL, 1 on SSC15

Trait	SSC	SNP	Position (Mbp)
WHC	15	DRGA0015508	113.726097
	15	ALGA0087340	116.735371
	8	ASGA0039159	71.443924
	15	ALGA0087116	113.451557
	15	ALGA0087118	113.464523

Maternal abilities

- Genetic variability/ Relation with piglet survival and growth
 - Variability of farrowing cinetic
 - Production and Composition of colostrum
 - Sow and piglet behaviour
 - Litter characteritics
- Selection criteria
 - Piglet weight (homogeneity)
 - Piglet maturity (comparison Ms / LW)

How to improve animal robustness?

- Selection on functional traits
 - Morphology
 - Disease resistance, immune response
 - Survival, longevity
- Environmental sensitivity
 - -GxE
 - Reaction norm
- Stress reactivity

Cortisol and robustness

- Higher cortisol levels
 - Growth rate, feed efficiency, 🆊 fat/lean ratio
 - Newborn survival, tolerance to heat stress
- Improve robustness = higher HPA axis activity

Estimate genetic determinism of ACTH response in pigs, and associated traits

Health, immune response program

- Objective
 - Estimate genetic variation of immune response
- Program
 - 1. Estimate genetic parameters of a large number of immune response traits (innate and acquired)
 - 2. Selection experiment on the most pertinent traits
 - 3. Genomic studies
 - 4. Metagenomic studies and relation with immunity

Congenital disorders: DNA bank

Minipig line > human nutrition studies

3 breeds:

- Vietnamese (Mong Caï, I, crossbred?),
- Pitman-Moore,
- Yucatan

Genomic selection

- Genomic selection for pyramidal breeding scheme
 - Crossbred animals
 - Selection / production environment

- Phenotypes
 - Wellfare
 - Health
 - Quality (boar taint)

