

WWS美國環球牛精液公司 新耕有限公司 鄒年烘先生主講101.03.20

Presentation Overview

1. Sexed semen overview

- 2. U.S. milk production trends
- 3. WWS overview

Sexed Semen Processing Overview

The Discovery & Development of Semen Sexing

Early-mid 1980's: United States
 Department of Agriculture (USDA)
 begins lab research on sperm
 sorting

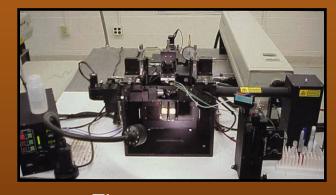
 Late 80's/early 90's: Commercial development and field research begins

• 1989: First live calf resulting from sexed semen is born

 2003: Sexing Technologies (ST) acquires U.S. rights to process and market sexed semen

genderSELECTed™ Semen: the Early Stages

- Dec. 2004 Jan. 2005: 3 Holstein bulls and 1 Jersey bull sent to Sexing Technologies (ST) in Texas
 - Semen collected and market application research begins
- March 2005: Additional semen made available
- Nov. 2005: Initiation of marketing efforts
 - Additional bulls sent to ST in Texas


genderSELECTed™ Semen: the Early Stages

genderSELECTed™ Semen: Expanded Production

- February 27, 2006: ST opens on-site facility at Select Sires, Plain City, Ohio
 - 4 flow cytometers (sorters)
 - 250,000-straw annual production capacity
- November 1, 2006: 2 additional sorters installed at Ohio facility
 - 350,000-straw annual production capacity
- 2007-2008: 12 additional sorters installed

Flow cytometer (sorting machine)

Steps Prior to Semen Reaching Sexing Lab

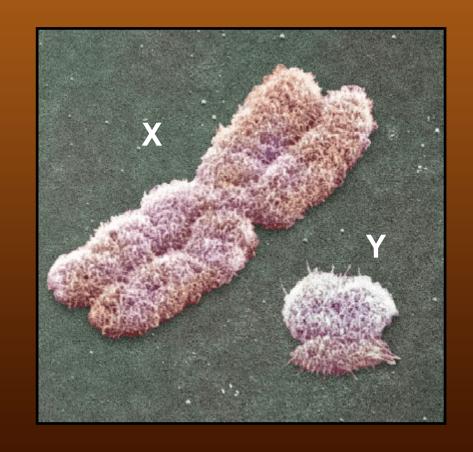
- Semen collected and properly labeled
- Semen evaluated for sperm cell concentration
- Sperm motility estimated

Sexing Technologies Lab at Select Sires

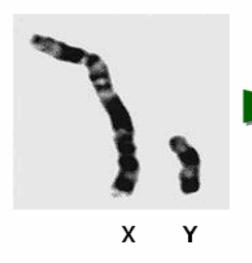
Semen Received at Sexing Lab

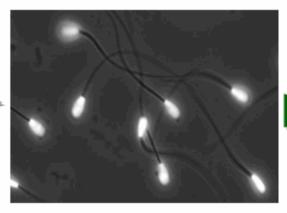
Semen Reevaluated by Sexing Lab Technician

Preparation of Chemicals & Media at Sexing Lab

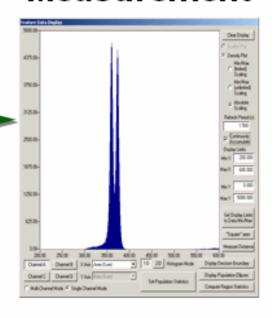

Semen Sorters & Computers

X & Y Chromosomes


- In cattle, X chromosome (female) contains 3.85% more DNA than Y chromosome (male)
- Used to separate X from Y and observe differences in fluorescence from laser treatment



How Semen Sorting Works


Chromosomes

Sperm Cells

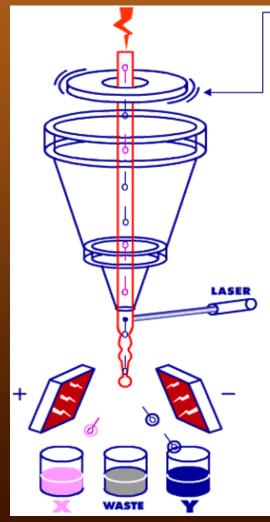
Measurement

3.85% total DNA difference between bovine X and Y chromosomes

Stained sperm cells fluoresce in ultraviolet light.

Fluorescence magnitude differs for X and Y cells.

Semen Sorting (Flow Cytometry)


Sexing Technologies Sorting System

Single-file sperm

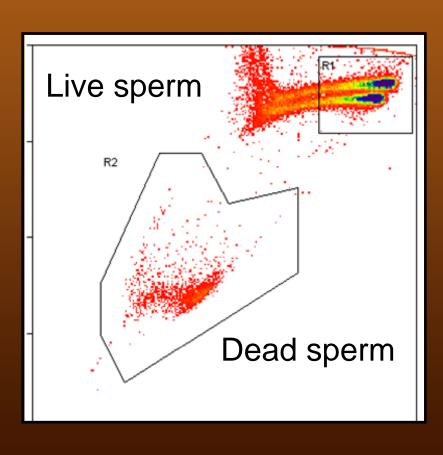
Laser

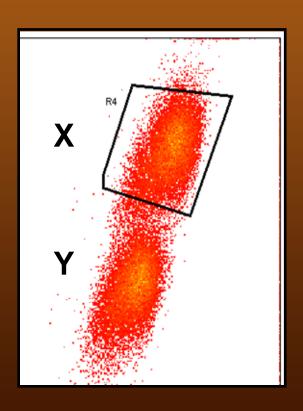
Electromagnets

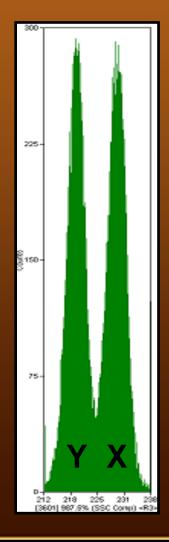
Collection tubes

- A piezo electric crystal is undulated approximately 90,000 times/second, which breaks the stream into droplets at a particular point in time. The location of the last-attached droplet in the stream is highly controllable.
- An X- or Y-bearing sperm is compared to a preset sort criteria.
- After a time delay, the insertion rod is charged.

- A charge is applied at the time the cell reaches the last attached drop.
- The charged droplets are deflected as they pass between continuously charged plates.
- Particles not meeting the criteria pass straight down to waste.


Semen Sorting



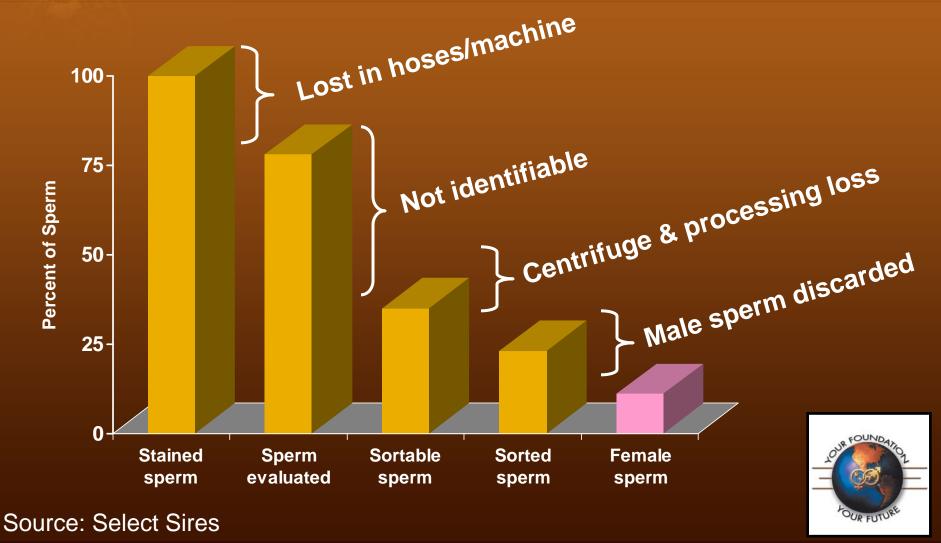

- X sperm saved
- Y and "undetermined" sperm discarded

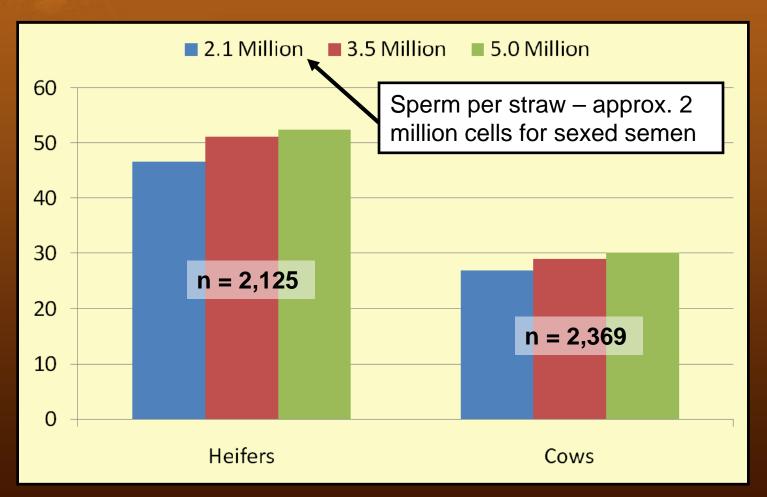
Flow Cytometer Monitor Displays

Sorters Frequently Adjusted to Reach >90% Female Purity

Semen Quality Analysis

	ų.	SEXED SEMEN DATA				
Code	Name	Straws Passed	% Post Sort Motility	% Post Thaw Motility	% Purity Females	% Intact Acrosomes
7HO6546	REMINGTON	8,518	72	57	91	79
7HO6685	BRYCE	9,609	65	49	92	70
7HO6055	BRIGHT	10,062	73	54	91	75
9HO2763	FARADAY	6,570	71	54	91	76
7HO6454	GENISIS	9,479	71	55	90	74
7JE613	BIG TIME	5,134	70	43	91	72
7JE576	SAWYER	9,579	72	54	91	79
RESULTS		58,951	71	52	91	75

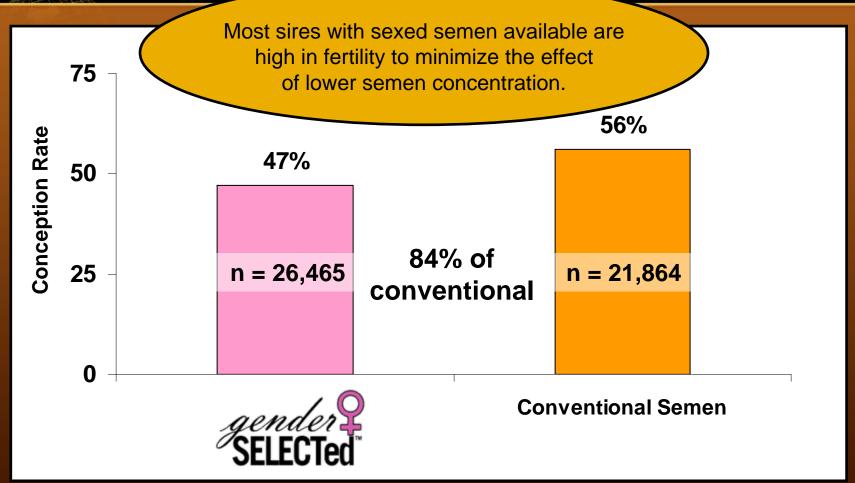




Sperm Loss During Sorting

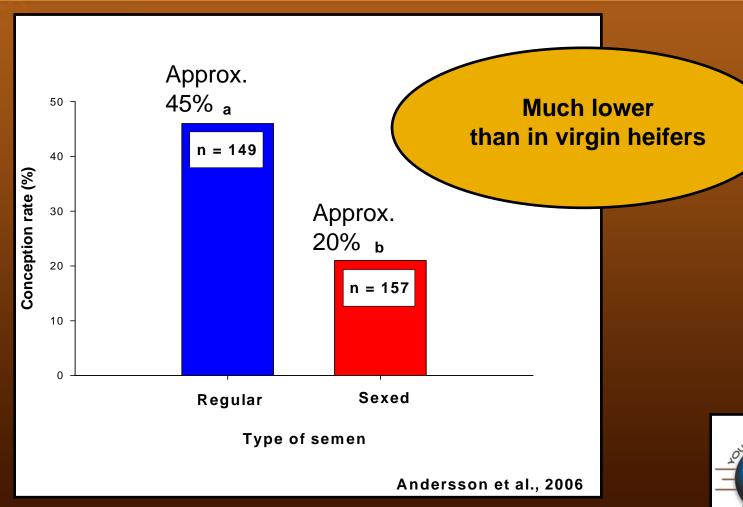
Effect of Sperm Concentration on Dairy Cattle Conception

Source: DeJarnette et al., 2008

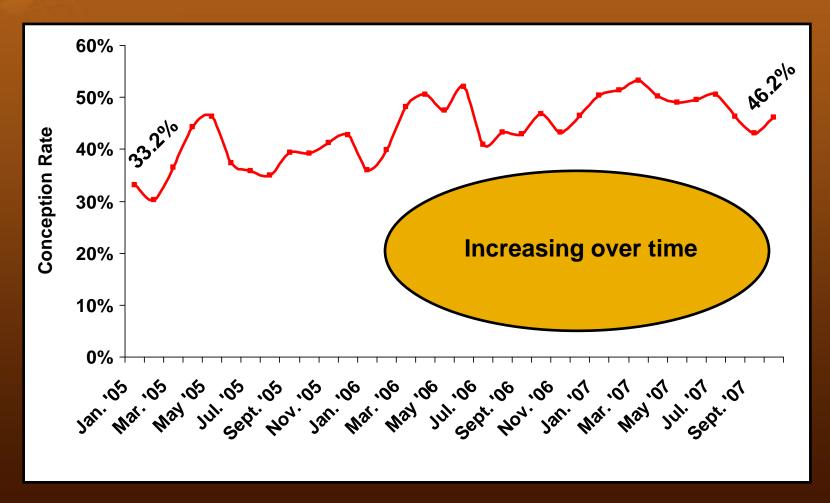


Sexed Semen Conception Rates

- Lower than conventional semen due to lower sperm concentration
- Average first service conception rate in virgin heifers is generally 75-80% of first service conception rate using conventional (non-sexed) semen
- First conception rate may be 35% or lower for some herds or up to 70% for other herds, depending on various factors


genderSELECTed™ Conception Rate in First Service Virgin Heifers

Source: Select Sires


Conception Rate in Dairy Cows Showing Natural Heat

Data supplied by Accelerated Genetics

Trend of *gender*SELECTed™ Conception Rate in Holstein Heifers

Source: Select Sires

Improvements Through the Years

	2003	2008
% females	85-90%	≥ 90%
Avg. Net Merit of sexed sires	\$170	\$300
Avg. sexed conception rate	30-35%	45-50%

Sexed Semen Handling & A.I. Technique

- Only experienced breeders!
- ½ cc semen straw
- Use gloves and tweezers
- 35-37 °C water temperature
 - In water for 30-45 seconds
- Post-thaw thermal protection
- Pre-warm A.I. gun
- Put semen in uterus within 5 minutes

Heifer Management Practices

- Use only in virgin heifers that have achieved >60% of mature weight by 14 months
- Use of estrus synchronization and breeding to observed standing heat encouraged
- Inseminate heifers 8-12 hours after observed estrus (AM/PM rule)
- Use of timed A.I. discouraged

Keys to Success Using Sexed Semen

- Use primarily on first or second services in virgin heifers showing true standing heat
- Semen thawing and handling areas should be warm and draft-free
- Warm all semen handling equipment (¼ cc gun, sheaths, paper towels) prior to contacting straws
- Only highly experienced technicians should use this product

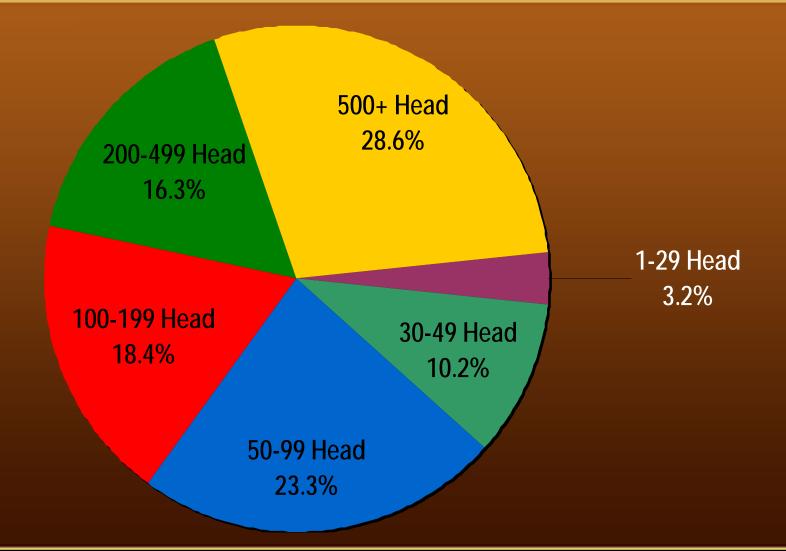
Keys to Success Using Sexed Semen

- Don't use in low fertility herds (CR < 60%)
- Extreme temperature protection necessary to prevent cold shock
- Management is biggest impacting factor on fertility

U.S. Dairy Industry

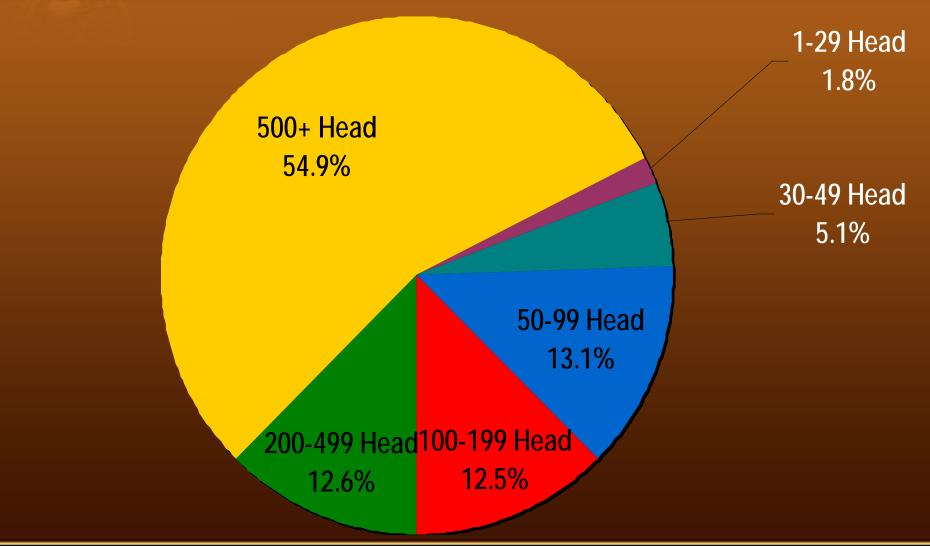
- Total production: 84.4 billion kg
- 67,000 dairy farms
- 9.33 million cows (93% Holsteins)
- 4.03 million cows on milk recording
- 2008 Registered Holstein averages:
 - 11,545 kg M
 - 428 kg F
 - 349 kg P

Source: USDA/AIPL, USDA/NAAS, Holstein Association USA; 2008


U.S. Milk Production Trend

Year	Milk Cows (millions)	Milk/Cow (kg)	Total kg Milk (billions)
1996	9.372	7,470	70.001
1998	9.151	7,811	71.48
2000	9.199	8,271	76.09
2002	9.139	8,458	77.30
2004	9.010	8,617	77.64
2006	9.137	9,024	82.45
2008	9.315	9,251	86.18

Source: USDA-NASS



U.S. Herd Sizes (1999)

U.S. Herd Sizes (2008)

U.S. Dairies Over 1,000 Cows

Year	No. Herds	% of Total	No. Cows	% of Total
1992	564	0.36%	937,358	9.88%
1997	878	0.75%	1,589,844	17.48%
2002	1,256	1.37%	2,624,508	28.83%
2007	1,582	2.26%	3,700,982	39.85%
*2012	1,803	3.40%	4,587,316	49.90%

Source: U.S. Census of Agriculture

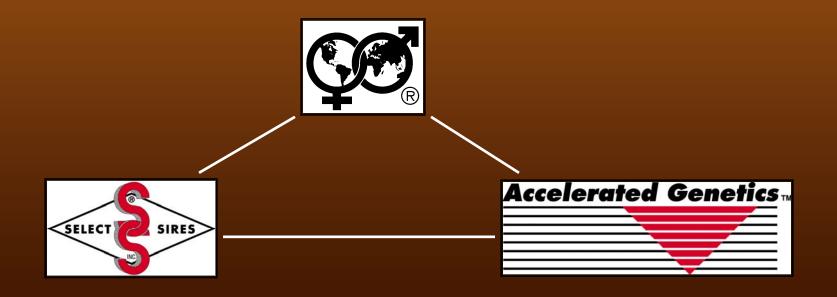
*2012 figures are projected

World Wide Sires Overview

With highest integrity, World Wide Sires provides industry leading genetics and services to ensure continued success for our global customers.

1971: WWS Founded by Mr. Bill Clark

Bill Clark


- California dairyman
- Breeder of Cal-Clark Board Chairman, MGS of 7HO1897 BLACKSTAR
- Hosted international guests
- Marketed animals overseas
- Identified global need for and interest in U.S. dairy genetics

2001: WWS Acquired by Select Sires and Accelerated Genetics

 Select Sires and Accelerated Genetics purchase WWS for all sales and marketing outside the Americas

Select Sires: World's Largest A.I. Cooperative

- Comprised of 10 farmer-owned and controlled cooperatives based in Plain City, Ohio
- Over 11 million units of semen sold globally each year
- Approximately 1,900 bulls housed in 59 barns

Accelerated Genetics: Brand New Production Facilities

- Farmer-owned and controlled co-op based out of Baraboo, WI
- 700 dairy and beef sires housed at production facilities in Westby, WI
- Over 5 million units of semen sold globally each year
- Founder of Genetic Visions, Inc., in-house research facility and pioneer in genetic marker testing

Elite Product to Fit Each Market

- 209 Proven bulls
 - 153 Holstein
 - 56 colored breeds
- 110 genomically enhanced young sires (G Force program)
- Product available from 6 dairy and 12 beef breeds
- 69,000 farmer-owners!

Source: U.S. A.I. co-ops, January 2010

WWS: Global Sales Network

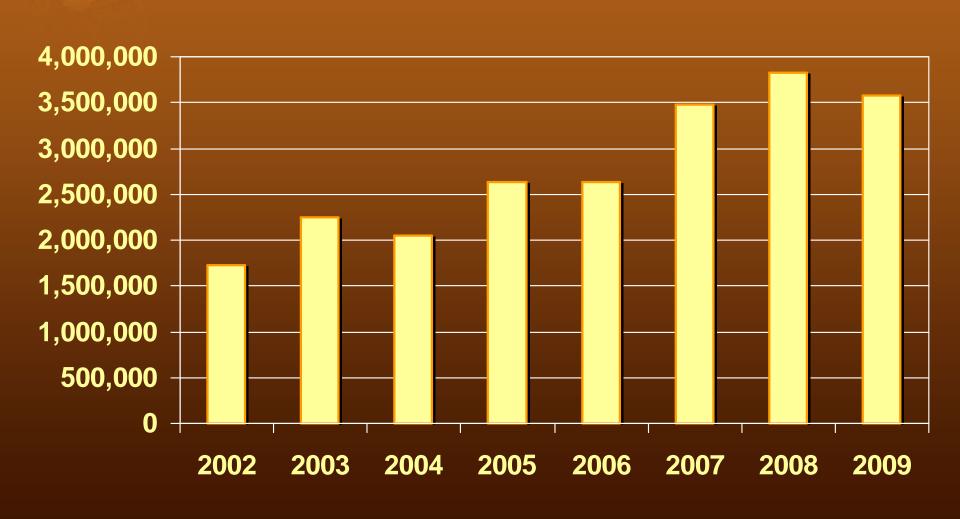
3,577,699 Doses

Europe

Africa

Asia

Oceania


Middle East

67 Countries

WWS Annual Unit Sales

謝謝指教!

