Productivity and Improve Efficiency of the Philippine Application of Molecular Methods to Increase Swine Industry

Duration: 3 years (May 2013 to April 2016)

- Development and application of molecular markers in selecting genes for prolificacy and other positive traits of swine/JRV Herrera/PCC Proj 1.
 - Development and application of molecular markers in selecting disease resistance genes and screening of genetic defects of swine/CN Mingala/PCC Proj 2.

Cooperating Agencies: PCAARRD, PCC, BAI, ASBAP

General Objective

increase productivity and improve production efficiency of the Philippine swine industry through the application of gene marker technology in breeding and The R&D program implemented thru private-public partnership aspires to selection.

Specific objectives

Develop and apply genetic markers associated to prolificacy and other positive production traits.

Develop and apply genetic markers for selection of disease resistance and screening of genetic defects. In partnership with ASBAP, establish a private-sector operated swine genomics service laboratory.

					10
S&T Interventions and Deliverables	Potential Impact	Genetic improvement to increase efficiency and productivity from 1.6 MT to 2.1MT/sow/year.	Increase efficiency of production	Increase productivity & efficiency of production thru preeder pies assured	with high performance and consistent product quality
	Deliverables	Increase LSBA to 10.5 and ADG to 600g thru efficient selection & breeding (2016)	CARE system for improved mgt & decision in farm	(2015) 50% phenotypic uniformity (2016) 4 signature Phil. Native pig breeds	(2019) Breed registry system established (2016)
	S&T Intervention/s	Gene marker technology for (litter size, fast growth & disease resistance)	Computer assisted remote	system Sustainable native pig breed development	Establishment of breed registry for swine purebreds
	S&T Gaps	Technology to increase litter size	Mgt & decision support system	Breeding true- to-type native pigs	Systems & protocol to facilitate breed registry
	Industry Problem	Low productivity of sows Low litter size (LSBA= 9.6)		Lack of native pig genetic resource conservation	No breed registry established for commercial purebreds
	Stage in the Supply Chain	a. Breeding herd production and management			ю

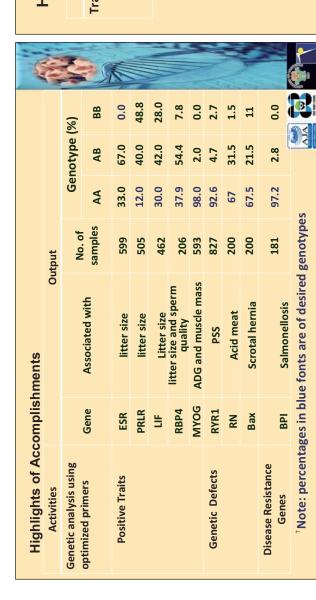
Target genes....

Meat Quality	Reproduction	Growth Rate
Cabca (calcium-release-channel) Cabsar (calpastatin gene related to leanness/less fat and moisture in meat) In meat) In PABP (Heart-type fatty acid binding protein, intramuscular fat) LEPR (leptin receptor, fat deposition)	estrogen receptor litter size) • PRLR (prolactin receptor, litter size) • RBP (Retinol-binding protein, litter size, sperm quality) • MYOG (Myogenin, birth weight)	MYOG (myogenin, growth rate) MCAR (Murine coxsackievirus and Adenovirus receptor, related to loin meat quality and intramuscular fat)

Genes Related to Genetic Defects and Disease Resistance

Genetic Defects

RN Gene (Rendement Napole)


- Acid Meat
BAX Gene (BLC2-assoc. X
Protein) – Scrotal Hernia

Hal Gene (Halothane) - PSS

Disease Resistance

- FUT1 (α 1, 2 fucosyltransferase)- E. coli
- MX1 Gene (Myxovirus resistance protein)- influenza
- BPI (Bactericidal permeability increasing protein) resistance to Salmonella
- SLA Gene (Swine Leukocyte Antigen)- post weaning diarrhea
- NRAMP 1 (Natural Resistance Association
- Macrophage Protein)- intracellular pathogen

Highlights of Accomplishments

Output	4 staff were trained on new techniques of genetic analysis and benchmarking on the application of molecular selection by private swine breeders on 23-29 March 2014 at Taiwan Livestock Research Institute.
Activity	raining of staff

Animals that will undergo performance testing ✓ Animals included in the breed registry ✓ All imported animals Hog Producers Group, Swine Forum, National Hog ✓ Promotion of technology during farm inspection meetings (ie., ASBAP Midyear meeting, VisMin Federation meeting, ProPork meeting, PSIRDFI Promotion and V Promotion of technology and presentation of initial project outputs during industry group quarterly meeting, Infarmco BOD meeting) Output for accreditation Highlights of Accomplishments Activities/Targ technology to advocacy of genomic breeders swine

The direction is that genetic screening will be done on:

