REPRODUCTIVE VLABILITY OF MARINDUKE PIG

ARNOLFO M. MONLEON, PhD Associate Professor 5 & Campus Director

2nd Pig Genetic Networking Conference – Philippines & Taiwan Taiwan Livestock Research Institute, Tainan City, Taiwan October 25, 2017

 $\sim 17 \sim$

• Marinduke pig and its hybrids (locally called as "hap-hap") are sought for the lechon (roast whole pork) with about 45,368 heads yearly sales (3,781 hd/mo) within the period 2012 to 2016 (http://marinduquevet.ph/?page_id =438)

INTRODUCTION

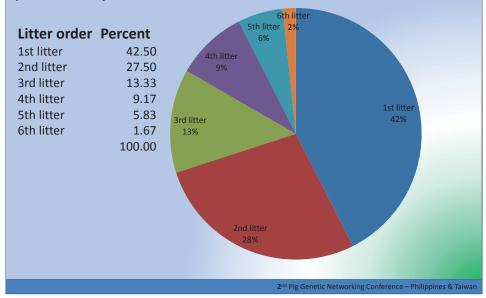
• Marinduke pig is a "trade name" of native pig of Marinduque, an island province in the Southern Tagalog Region of the Philippines

 Marinduke pig is locally recognized as having black coat, a discriminant phenotype to the non-native pig, and possesses unique and distinct phenotype exclusive to its population

2nd Pig Genetic Networking Conference – Philippines & Taiwar

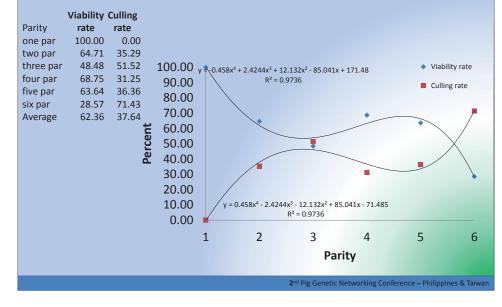
REPRODUCTIVE VIABILITY OF SOW

Percent distribution of sow-housed (n sow = 51) based on parity at different seasons.

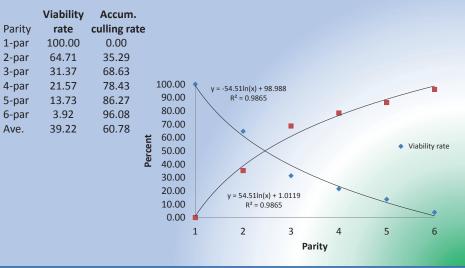

Parity	Percent
one parity	35.29
two parities	33.33
three parities	9.80
four parities	7.84
five parities	9.80
six parities	3.92

nt 5.29 3.33 9.80 7.84 9.80 3.92 10% five parities 10% fire parities fire p

2nd Pig Genetic Networking Conference – Philippines & Taiwan


REPRODUCTIVE VIABILITY OF SOW

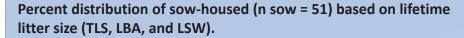
Percent distribution of sow-housed based on litter production (n litter = 120) at different seasons.

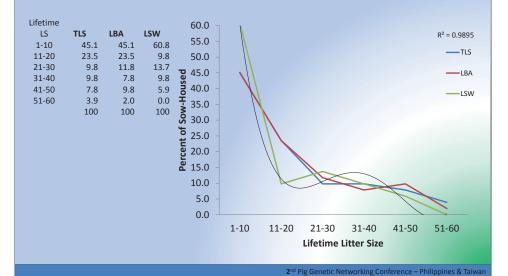

REPRODUCTIVE VIABILITY OF SOW

Viability rate and culling rate based on sow-retention at different seasons.

REPRODUCTIVE VIABILITY OF SOW

Viability rate and accumulated culling rate based on sow-housed (n = 51) at different seasons.


2nd Pig Genetic Networking Conference – Philippines & Taiwar


REPRODUCTIVE VIABILITY OF SOW

Reasons for culling of sow

Count	Percent
44	89.80
3	6.12
2	4.08
49	100
	44 3 2

REPRODUCTIVE VIABILITY OF SOW

REPRODUCTIVE VIABILITY OF SOW

Distribution of sexes in parity

Parity	Male born	Female Born	% Male	% Female
1	3.1	2.7	53.45	46.55
2	4.1	4.3	48.81	51.19
3	4.0	4.6	45.98	52.87
4	4.6	4.3	51.69	48.31
5	5.0	3.4	59.52	40.48
6	3.0	4.5	40.00	60.00
	4.0	4.0	50.63	50.63

REPRODUCTIVE VIABILITY OF SOW

Litter size in six successive parities of Marinduke pig.

Parity Order	n sow	n litter	Ave. Total Litter Size	Ave. Litter Size	Ave. Litter Size
				Born Alive	Weaned
1 st Parity	51	51	5.98	5.73	4.16
2 nd Parity	33	33	8.52	8.33	6.97
3 rd Parity	16	16	9.38	8.56	7.56
4 th Parity	11	11	9.46	8.73	7.45
5 th Parity	7	7	9.29	8.86	7.29
6 th Parity	2	2	8.00	7.50	3.00
Overall		120	7.68±2.9	7.31±2.8	5.85±3.2

2nd Pig Genetic Networking Conference – Philippines & Taiwan

REPRODUCTIVE VIABILITY OF SOW

Litter size from 2014 to 2017

Year	n litter	TLS	LBA	LSW	
2014	8	8.50	8.25	7.75	
2015	46	6.74	6.30	5.30	El Niño
2016	42	8.05	7.67	5.50	
2017	24	8.54	8.29	6.88	
Ave.	120	7.96	7.63	6.36	

REPRODUCTIVE VIABILITY OF SOW

Reproductive aberration in sow

Parity	Stillborn	Mummy	% Stillborn	% Mummy
1	0.3	0.3 0.0		0.00
2	0.2	0.2 0.0		0.00
3	0.8	0.0	8.42	0.00
4	0.7	0.1	7.22	1.03
5	0.9	0.4	9.38	4.17
6	0.5	0.0	6.25	0.00
Ave.	0.6	0.1	6.98	1.16

2nd Pig Genetic Networking Conference – Philippines & Taiwar

REPRODUCTIVE VIABILITY OF SOW

Most prolific sow

4 parities 53 TLS (13.25) 52 LSBA (13) max. 15 48 LSW (12)

2nd Pig Genetic Networking Conference – Philippines & Taiwan

pines & Taiwar

REPRODUCTIVE VIABILITY OF BOAR

Reproductive aberration in boar

-					
Boar ID	Stillborn	Mummy	% Stillborn	% Mummy	
14-9	0.5	0.0	12.50	0.00	
15-5	0.8	0.0	10.80	0.00	
10-6	0.8	0.0	9.76	0.00	
10-3	0.9	0.0	8.72	0.00	
5	0.5	0.1	7.78	2.18	
10-10	0.7	0.0	7.73	0.00	
27-4	0.7	0.0	7.44	0.00	
FS	0.5	0.0	7.14	0.00	
16-2	0.5	0.0	5.56	0.00	
8	0.2	0.0	3.14	0.00	
14-4	0.3	0.0	2.75	0.00	
1-7	0.1	0.0	1.73	0.00	
8-7	0.1	0.1	1.16	1.16	
23	0.1	0.0	0.93	0.00	
9-3	0.0	0.0	0.00	0.00	
9-7	0.0	0.0	0.00	0.00	
15-2	0.0	0.0	0.00	0.00	
20-5	0.0	0.0	0.00	0.00	
29-1	0.0	0.0	0.00	0.00	
29-2	0.0	0.0	0.00	0.00	
34-6	0.0	0.0	0.00	0.00	
			2	nd Pig Genetic Networ	king Conference – Phili

REPRODUCTIVE VIABILITY OF BOAR

Litter size in selected boar (n boar = 21)

Boar ID	n litter	TLS	LBA	LSW	Boar ID	n litter	TLS	LBA	LSW	
1-7	14	113	111	100	14-4	3	12.0	11.7	10.7	
23	14	105	104	85	10-3	7	9.9	9.0	6.7	
5	14	90	81	62	29-2	2	9.0	9.0	8.0	
8-7	11	85	83	72	16-2	2	9.0	8.5	4.5	
10-3	7	69	63	47	27-4	3	9.0	8.3	2.3	
15-5	9	65	57	45	10-10	6	8.7	8.0	7.2	
8	9	63	61	62	10-6	5	8.2	7.4	5.8	
10-10	6	52	48	43	1-7	14	8.1	7.9	7.1	
9-7	6	48	48	42	9-7	6	8.0	8.0	7.0	
10-6	5	41	37	29	9-3	1	8.0	8.0	2.0	
14-4	3	36	35	32	8-7	11	7.7	7.5	6.5	
27-4	3	27	25	7	34-6	3	7.7	7.7	5.3	
34-6	3	23	23	16	23	14	7.5	7.4	6.1	
29-2	2	18	18	16	15-5	9	7.2	6.3	5.0	
16-2	2	18	17	9	8	9	7.0	6.8	6.9	
29-1	3	17	17	8	FS	2	7.0	6.5	5.5	
FS	2	14	13	11	5	14	6.4	5.8	4.4	
20-5	2	12	12	3	20-5	2	6.0	6.0	1.5	
15-2	2	9	9	4	29-1	3	5.7	5.7	2.7	
9-3	1	8	8	2	15-2	2	4.5	4.5	2.0	
14-9	2	8	7	7	14-9	2	4.0	3.5	3.5	
					2 nd Pi	ig Genetic Net	tworking Cor	nference – Ph	ilippines & Ta	iwai

ACKNOWLEDGMENT

The Philippines Department of Science and Technology – Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST-PCAARRD) provides the financial grants for this study

