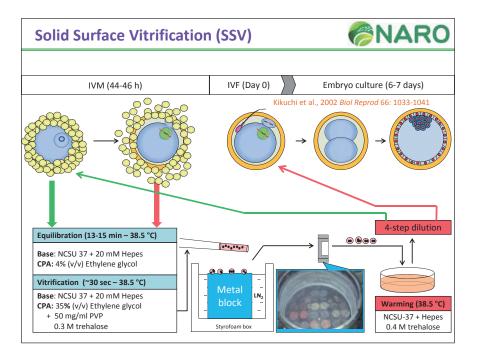
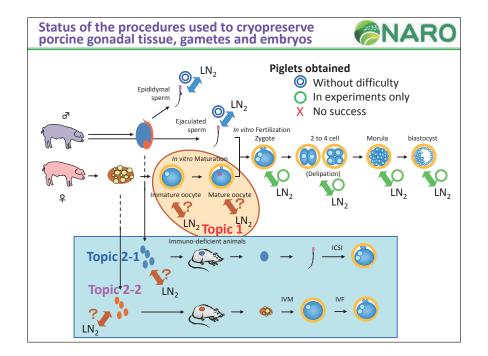
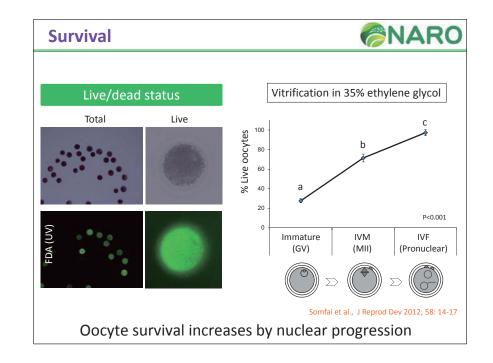
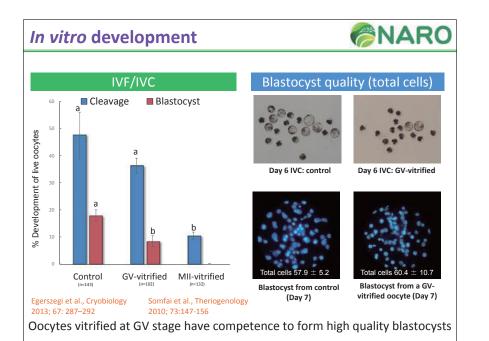


NARO


Importance of preservation of gametes and gonadal tissue for porcine genetic resources

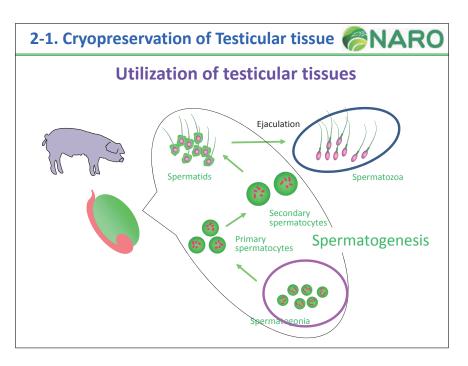

Kazuhiro Kikuchi^{1,2}, Hiroyuki Kaneko¹, Michiko Nakai¹, Tamas Somfai³, Naomi Kashiwazaki⁴, Takashi Nagai⁵

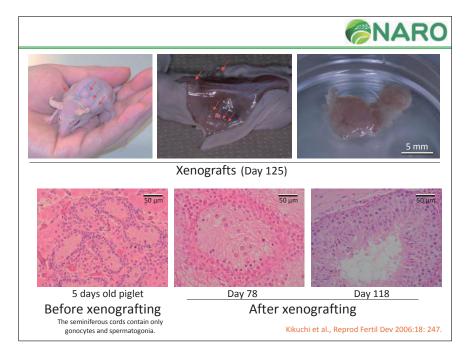

kiku@affrc.go.jp

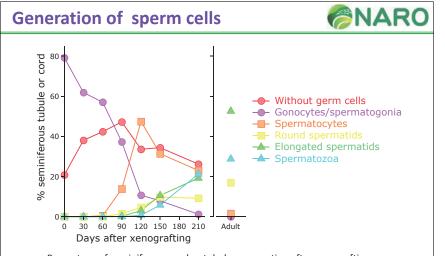

 ¹ Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
² The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
³ Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
⁴ Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
⁵ Headquarter, NARO, Tsukuba, Ibaraki, Japan

National Agriculture and Food Research Organization

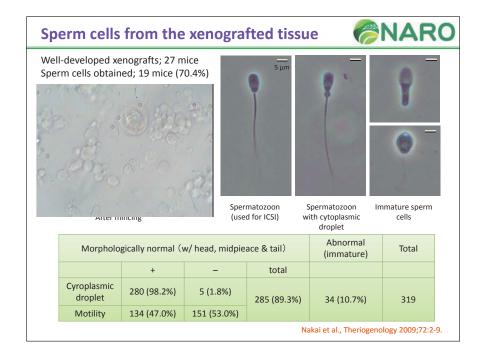
Piglet production

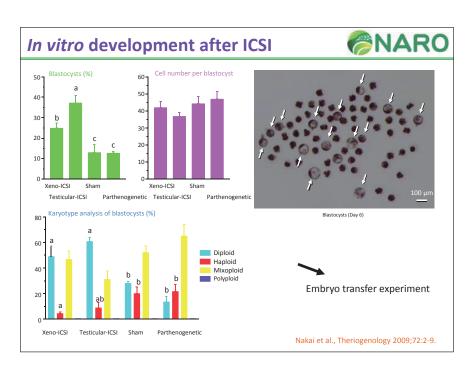

				5 (Day 0				A A A A A A A A A A A A A A A A A A A
Recipient	Total vitrified oocytes	No. embryos transferred	Pregnancy	Gestation (days)*	Total No. of piglets born (live)	Gender	Average body weight of piglets at birth (kg)\$	WA!
#1	567	16	+	115	4 (4)	8:2/9:2	1.5 ± 0.04	
#2	1235	27	+	114	6 (6)	8:3/9:3	1.52 ± 0.05	
Overall	1802	73			10 (10)	8:5/9:5		A MARINE AND A COMPANY

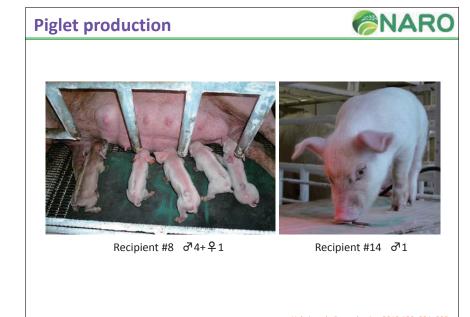

@NARO


Conclusion/Oocyte cryopreservation

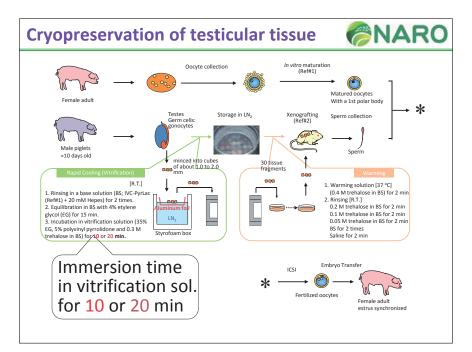
- MII stage: the survival is high but oocytes have limited chance for recovery > high frequencies of fertilization anomalies.
- GV stage: the survival is low, but surviving oocytes have the ability to recover > normal fertilization, good quality blastocysts and piglet production.

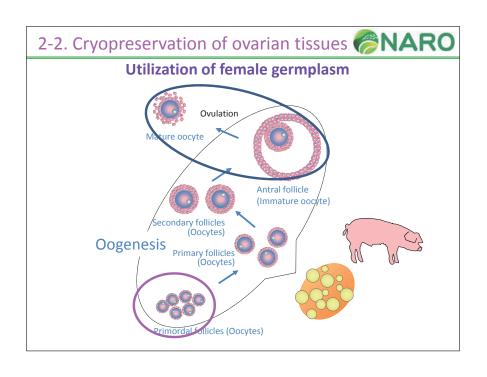


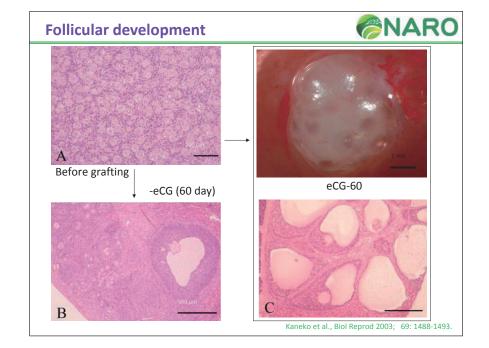



Percentage of seminiferous cord or tubule crosssection after xenografting. Histological sections of testicular tissues grafted into mice were prepared 0–210 days after xenografting. Those from adult boars were also prepared.

Kikuchi et al., Anim Sci J 2011;72:2-9.







Nakai et al., Reproduction 2010;139: 331-335.

Piglet production						NARO	
Table. Transfer to synchronized recipients of porcine oocytes injected with sperm from cryopreserved xenografts							
Immersion- time group	Recipient No.	Preservation of testicular tissue before grafting (days)	Sperm collection (days postgrafting)	No. of fertilized oocytes transferred	Pregnancy	No. of piglets born	
10-min	1 2 3 4	140 188 585 587	231 230 318 234	74 70 100 101	+ - -	ơ;1, ¥;1	
20-min	1 2 3 4	188 188 578 587	230 254 291 248	59 89 79 97	- + -	♂;2 ♀;3	
				Kaneko et a	al., PLoS One. 20)13;8: e70989.	

In vitro maturation

Group ¹	No. of mice	No. of grafts recovered ²	No. of oocytes recovered ²	No. of oocytes per mouse ³	No. of oocytes per grafts ³	No. of oocytes larger lager than 115 µm ⁴	No. of oocytes in MII stage ⁴
-eCG	7	51	122	17.4 ± 5.8°	$2.4 \pm 0.5^{*}$	$7(2.4 \pm 0.7^{\circ})$	$6(0.8 \pm 0.4")$
eCG-10	7	56	261	37.3 ± 7.7^{ab}	4.7 ± 1.0^{b}	$40(5.7 \pm 1.0^{\circ})$	$13(1.9 \pm 0.4^{\circ})$
eCG-30	5	39	295	59.0 ± 13.4^{tc}	$7.6 \pm 0.9^{\circ}$	$40(8.0 \pm 3.4^{\circ})$	$14(2.8 \pm 1.1^{\circ})$
eCG-60	7	57	573	$81.9 \pm 5.7^{\circ}$	10.1 ± 0.7^{d}	212 (30.3 ± 3.9 ⁵)	$98^{5}(14.0 \pm 1.0^{6})$

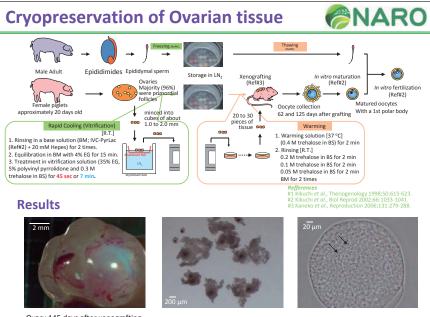
¹The eCG-10, -30, and -60 groups received 5 IU eCG at 10, 30, or 60 days, respectively, after vaginal cornification and the grafts were examined 48 later; the -eCG group received no hormone treatment and grafts were examined 10 days after vaginal cornification.

²Total number of grafts or oocytes recovered

³Values are mean ± SEM per mouse or per graft.

⁶The number of oocytes in each category is represented by the total number followed by (mean ± SEM per mouse). ⁵Value includes the number of oocytes with the first polar body that were subjected to IVF

value includes the number of oocytes with the first polar body that were subjected to iVF^{**} values in the same column without common superscripts are significantly different (P < 0.05).

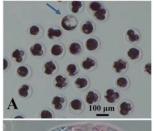

In vitro fertilization

2	No. of mature	No. (%) of	No. (%) of
	oocytes*	oocytes	monospermic
	inseminated	fertilized**	oocytes
eCG-60	20	11 (55.0)	9 (45.0)

* Oocytes with a visible first polar body

**Oocytes with male pronuclear and female pronuclei after 2nd polar body extrusion

Kaneko et al., Biol Reprod 2003; 69: 1488-1493.



Ovary 145 days after xenografting

In vitro developme received hormonal 1	oocytes	recovered	from	host	mice	that	ha

In vitro development

	Group	No. of mature oocyte* for IVF	No. of oocytes developed to blastocyst (Cell number)			
	eGG-2	31	0			
	eGG-2	100	0			
	FSH-7	115	1 (23)			
	FSH-14	163	1 (16)			
	FSH-14EA	113	1 (30)			
*Oocytes with a visible first polar body						

@NARO

Kaneko et al., Reproduction 2006;131: 279-288.

In vitro maturation and fertilization *PARO*

Maturation and fertilization of oocytes collected from vitrified and xenografted ovarian tissue

			,	0	
	Group*	Total	Matured oocytes	Sperm penetration	FPN+MPN formation
	45-sec	39	18% (7/39)	83% (5/6)	100% (5/5)
_	7-min	49	33% (16/49)	88% (14/16)	100% (14/14)

*The period treated with vitrification solution.

Data were not different statistically between groups.

Conclusion/ gonadal tissues cryopreservation

1) Testicular tissue

Xenografting offers a possible way for the effective utilization of vitrified testicular tissue fragments.

2) Ovarian tissues

Hopefully also in near future