MYOSTATIN DEFICIENCY INCREASES TYPE II FIBER FORMATION IN SKELETAL MUSCLE BY REGULATING THE EXPRESSION OF MYOD AND MEF2 IN NEWBORN MYOSTATIN-KNOCKOUT PIGS

Mei-Fu Xuan, Jun-Xia Wang, Yonggyu Choe, Xi-Jun Yin

Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, China.

Introduction

Myostatin (MSTN) is primarily expressed in muscle and plays an important role in muscle and fat development in pigs. The lack of myostatin leads to a muscle hypertrophy and increases fast fiber (type II) formation. Several reports suggest that myogenic differentiation factor (MyoD) is required for fast fiber formation and myocyte enhancer factor 2 (MEF2) is responsible for slow fiber (type I) formation. In order to elucidate whether MSTN gene could induce muscle fiber type change by these factors or not, myostatin-knockout pigs were analyzed.

Materials and Methods

Three skeletal muscles, namely the biceps femoris (BF), diaphragm (DP) and semitendinosus (ST) were excised from newborn wild-type (WT), Mstn^{+/-} and Mstn^{-/-} pigs. Samples were examined by hematoxylin-eosin staining and ATPase staining for histomorphology analysis. Furthermore, expression patterns of MyoD and MEF2 were detected by quantitative RT-PCR.

Results and Discussion

Hematoxylin-eosin staining revealed the muscle fiber cross-sectional area (CSA) in myostatin-knockout pigs is significantly larger than in WT pigs, but muscle fiber CSA of MSTN^{-/-} is smaller than MSTN^{+/-}; this result may be related to the birth weight. ATPase staining revealed increased type II fibers with a concomitant decrease in type I fibers in muscles of myostatin-knockout pigs. The composition rate of type II fiber in MSTN^{+/-} pig is higher than in MSTN^{-/-} pig. Quantitative RT-PCR results revealed that MyoD expression of muscle tissue was $1.3\sim2$ fold greater (p<0.01) in MSTN^{+/-} pig and $1.8\sim3.5$ fold greater (p<0.01) in MSTN^{-/-} pig compared with wild type. However, MEF2 mRNA levels were significantly lower in MSTN^{+/-} pig compared with wild type pig (p<0.05).