Taiwan Join the ICAR Proficiency Test of Cow Raw Milk

台灣參加國際畜政聯盟牛乳乳質分析熟練測試

Jen-wen Shiau Po-an Tu Director Associate Researcher Hsinchu Branch (Dairy Research Center), TLRI

What is Proficiency Testing?

The ISO definition of laboratory proficiency testing is:

"Determination of laboratory testing performance by means of inter laboratory comparisons"

PT is a test of accuracy by comparing the laboratory results with the 'true' value.

³ Taiwan Join the ICAR Proficiency Test of Cow Raw Milk

Proficiency Tests for the milk analysis laboratories

The following information are available in ICAR Proficiency Test

Results of the Proficiency Test organised in September 2018

Results of the Proficiency Test organised in September 2017

Procedures and information to join the ICAR Proficiency Test and call for 2018.

· Procedures and information to join the ICAR Proficiency Test and call for 2017

· Results of the Proficiency Test organised in December 2016: new parameters (PAG, BHB and DNA

· Results of the Proficiency Test organised in March 2018

Results of the Proficiency Test organised in March 2017

· Results of the Proficiency Test organised in March 2016

Information about the Proficiency Test run in September 2016

Results of the Proficiency Test omanised in September 2016

Information about the ICAR Proficiency Test

microrganisms)

Laboratory performance proficiency testing of analytical method performance has become an integral part of third-party performance certification programs for laboratories around the world.

1

- Proficiency testing results indicate if the analytical performance of a laboratory on a particular method and analyte are within some normative performance criteria and provides a comparison to the performance of other laboratories.
- The Proficiency Tests that are organised twice a year by ICAR and participated for the milk analysis laboratories in global Laboratories Reference Network (LRN) since

4

2

Proficiency Testing and ISO 17025

- The philosophy behind the quality assurance section of ISO/IEC 17025 is to firstly ensure that a single analyst within a laboratory is able to consistently reproduce the same result on the same sample.
- Secondly, the result produced by this analyst should reflect the result that would have come from any other analyst in the laboratory.
- Thirdly, any results from the laboratory as a whole should reflect the results that are agreed upon by many other laboratories.

2016.

5 Why PT Participate?

- ≻Requirements of certification and accreditation body.
- > Proof to management of competence.
- > Proof to higher authorities and clients of competence.
- > Opportunity for increasing understanding of quality issues in a test.
- > Opportunity for comparison of methodologies with other labs.
- >Increase confidence of laboratory.

Benefits of PT Participation

8

6

Domestic PT test in Taiwan

- >Our goal was to extend the feasibility of ICAR proficiency testing, analytical method quality assurance system, and production of reference samples for calibration of infrared milk analyzers to achieve a more efficient use of resources and reduce costs while maximizing analytical accuracy within and among milk payment-testing laboratories.
- >To achieve this, a multi-laboratory combined proficiency testing is conducted following ICAR analytical method for quality-assurance system to evaluate and improve the analytical performance of domestic milk processors in Taiwan.

Our Objectives

9

- >To use data from a set of milk samples to monitor the analytical performance to evaluate and improve the analytical proficiency of individual laboratories, and to calculate all-laboratory mean reference values for fat, protein, lactose, TS and SCC for these milks.
- > This enables the proficiency test samples to be used as reference materials to

calibrate a high-speed FTIR measurement.

	¹⁰ Participant and Test Item Statistics of domestic PT test in Taiwan										
Year	Month	Number of laboratories	Fat	Protein Lactose	SNF	SCC					
2018	October	21		• •			25				
2018	April	20		• •							
2017	October	19		• •			20				
2017	April	18		• •							
2016	November	20	•	• •	•	•	15				
2016	April	20		• •			of fat				
2015	October	20		• •			ag 10				
2015	May	19		• •			Nur Nur				
2014	October	19		• •			s				
2014	April	20		• •		•					
2013	November	19	٠	• •	•	•		Year/Month			
2013	July	20		• •			■ 2018 October ■ 2018 &oril ■ 2017	October 2017 April	2016 November 20		
2013	March	21		• •			■ 2015 October ■ 2015 May ■ 2014	October 2014 April	2013 November 20		
2012	November	22	٠	• •	•	٠	2013 March 2012 November 2012	June = 2012 March			
2012	June	21		• •							
2012	March	22		• •	٠	•					

11

Rationale

- ➤ Milk payment laboratories have a need for qualityassurance control of both chemical reference methods and secondary instrumental methods to ensure accuracy of testing.
- This approach allowed us to characterize analytical deviations from the mean of all laboratories for each laboratory for each method, to determine the causes of deviations, and to recommend possible corrections and improvements that could be made.

12

Approach

- A set of milk samples are formulated to produce an orthogonal matrix of fat, protein, lactose, SNF, and SCC concentrations and are analyzed by a group of laboratories.
- Statistical outliers were removed and all-laboratory mean reference values and within- and between-laboratory variation (i.e., S_r and S_R) with outliers removed were calculated for each milk sample for each component (fat, protein, lactose, TS, and SCC) per laboratory.

The proficiency of the was evaluated utilizing Z-scores and Euclidian distance plots without outliers removed.

Statistical Methods: Outlier Data Removal Procedures

- > In the context of PT performance analysis, one of the primary goals was to produce reference values for each sample that reflect as closely as possible the true value for the concentration of each component in a sample.
- The reference values will be used to calibrate many high-speed electronic milk-testing instruments that will influence the payment for very large volumes of milk.
- The harmonized outlier removal procedure is a sequential statistical process utilizing the Cochran, single Grubbs, or double Grubbs procedures, in that order.

14

Statistical Methods: Within- and Between-Laboratory Method Performance

- The statistical metric for within-laboratory variation of a method is the repeatability standard deviation (S_r) and the metric for between-laboratory variation is the reproducibility standard deviation (S_R) .
- The data are analyzed by the statistical procedures using the Microsoft Excel to determine the S_r , relative standard deviation of repeatability (RSD_r), r-value, S_R , relative standard deviation of reproducibility (RSD_R),

 $RSD = \frac{s}{x_{\text{mean}}}$

¹⁶ Statistical Methods: Laboratory Proficiency Evaluation

The mean difference (MD), standard deviation of the difference (SDD), and Euclidean distance (ED) were used to identify laboratories that were having problems with a particular method, for ranking the performance of laboratories over time for each method, and for documenting performance improvement across time.

The ED plots are statistical measures of similarity that are the distance from an individual data point to the centre point, which is calculated using the MD and SDD from the all-laboratory mean. The diagrams are extremely useful for rapidly determining problems that need attention first.

20

Troubleshooting Problems in Individual Laboratories

- >Through the use of ED plot of MD and SDD, individual laboratories within each test item that need the most help to improve performance can be identified.
- Examination of the ED plots for that laboratory help determine if the performance of the laboratory indicates high random error or high systematic bias.
- > This information is communicated to the laboratory and troubleshooting analysis troubleshooting is done to achieve improved performance. The goal of the approach is to achieve improve performance of the laboratories (i.e., reduced S_r and S_R).

					DETTEMENT	TON of SCC in RAW loow! MILK			
		8 323				non te sez monte (mar) ante.			
	表五:積確性 - 各實驗室	[早一樣品與							
	Table V: ACCURACY - differences (laboratory - reference) in %								
	Lab cod	eSample 1S	sample 2 San	sple 3Nample	4 d Sdieb	t			
21	A	11%	8%	575 675	8% 2%	5.506		22	
	В	-8%	-14%	3% 1%	-0% 5%	-1.953			
	c	0%	-10%	4% -2%	-4% 4%	-1.762			
	D	076	276	176 076	2% 2%	1.839			Company
		-37%	-176 1	778 276	356 186	0.209			Communi
	U U	.17%	.21%	0% -10%	13% 4%	5 131			
	1	.7%	195	191 . 291	.76. 194	1.546			
		.4%	-13%	76	.8% 3%	4.071			
	ĸ	.8%	2%	10%	416 516	1.348			\rightarrow Over a per
	i i	256	-2% 1	5% 22%	9% 10%	1.645			v over a per
	м	11%	9%	7% 6%	8% 2%	7,274			1 1
	0	876	0%	10%	675 476	2.905			laboratorie
	4	0%	-3%	1% 2%					ins of noorice
	Sd	7%	8%	95 855					1 1
	d- 各實驗室檢測結果與4	信单值差異之	· 牛均 mean o	differences					reduced wi
	Sd= 各實驗室檢測結果與	標準值差異。	之標準差 sta	ndard deviation	of difference	ca			
	t= st. Student 榆汇检测结	果实標準值書	王昇是百颜等	Student test -	comparison t	00 Upper limits: LT			alactropic r
	账值								electronic i
	 d = ± 10% 								
	 Sd = 10% 								× .
									≥An annua
	ISO 13366-2 IDF 148-2 4	見範之情痛性	1÷.						
	Level 101/mL Sr % r S	8R% R							• •
	150 6 25	9 38							review of r
	200 5 42	8 67							
	450 4 50	7 88							former form
	750 3 63	6 126							Iorum for (
	1500 3 126	6 252							
									of value to
									or value to
and the second							- The second second second second second		
							A REAL PROPERTY OF THE REAL PR	Tel participant de	
A STATE STATE STATE STATE STATE STATE						17年度第二元的背极的比较多			
								The second s	

Communication of Experience and Techniques

- > Over a period of years, the approach has enabled the group of laboratories to document improved analytical performance (i.e., reduced within- and between-laboratory variation) of high-speed electronic milk-testing equipment.
- An annual meeting of the laboratory technicians allows for review of results and discussion of each method and provides a forum for communication of experience and techniques that are of value to new analysts in the group.

