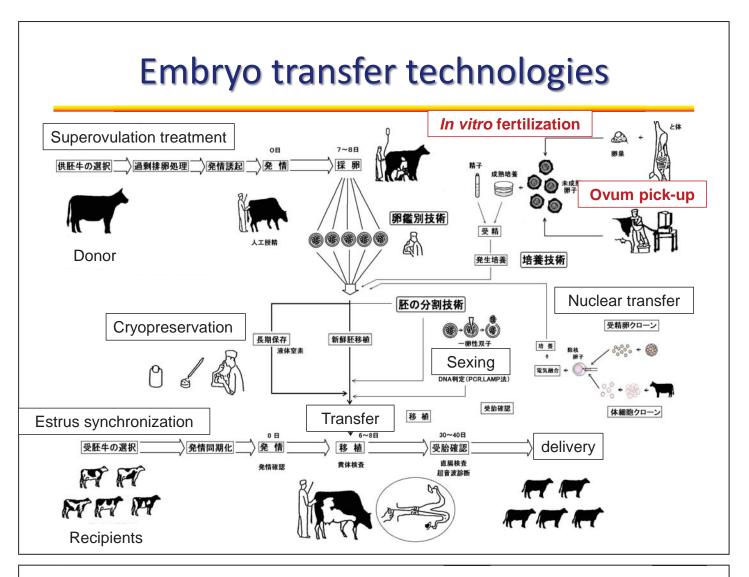
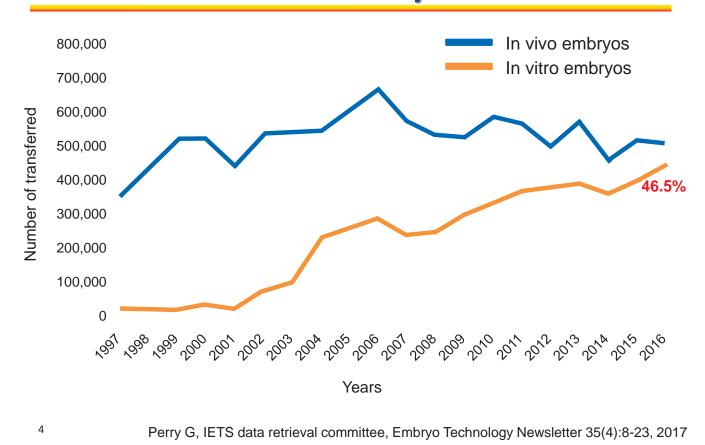
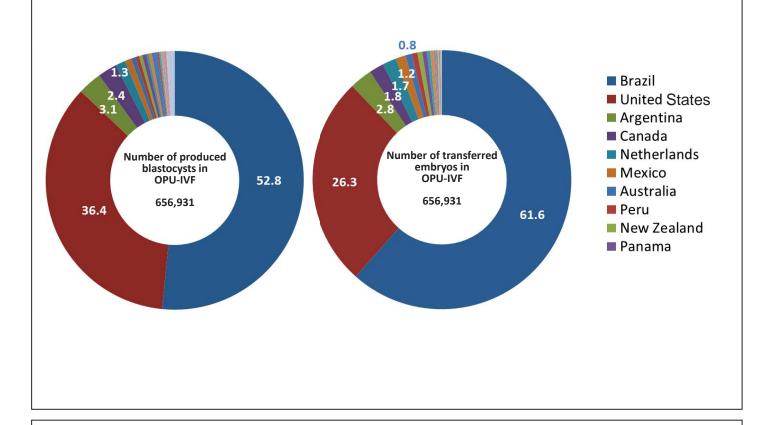
Bovine embryo production and selection system by ovum pick-up and *in vitro* fertilization


Kei Imai, PhD

Laboratory of Reproductive Biology and Technology, Department of Sustainable Agriculture, Rakuno Gakuen University, JAPAN imai@rakuno.ac.jp



What is ovum pick-up (OPU)?

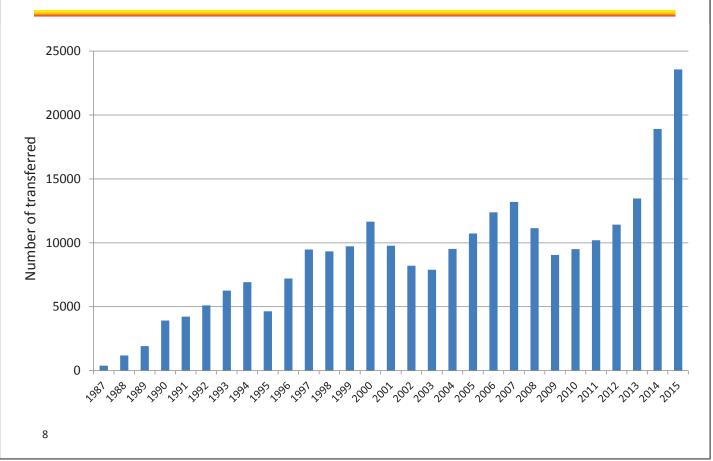

•	An oocytes collection method from living donors
•	A collecting method of the oocyte used for human assisted reproductive technology is applied to a cow.
•	Observed the ovaries and aspirate the oocyte by needle with ultrasound image
•	A probe and oocyte aspiration needle for cows are used.
•	OPU is possible to collect oocytes once a week or twice a week.
•	OPU is efficient embryo production system

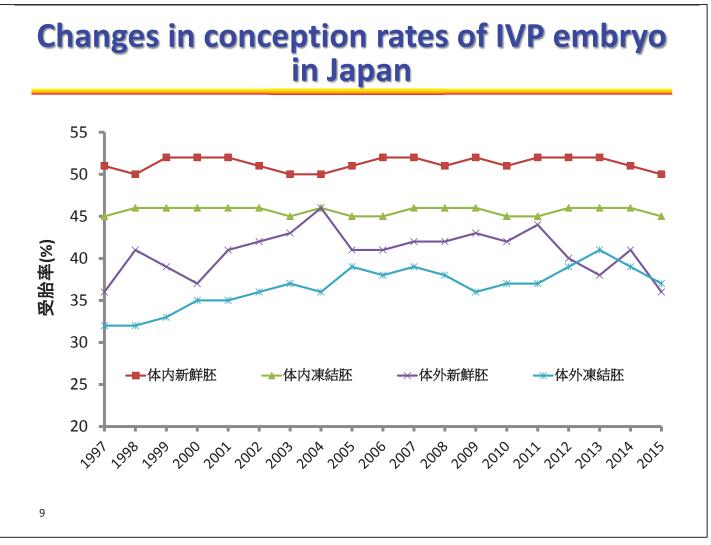
Changes in the number of transferred in *in vivo* and *in vitro* embryos in the world

Bovine OPU-IVF in 2016

Increasing rates of OPU-IVF embryos in 2016

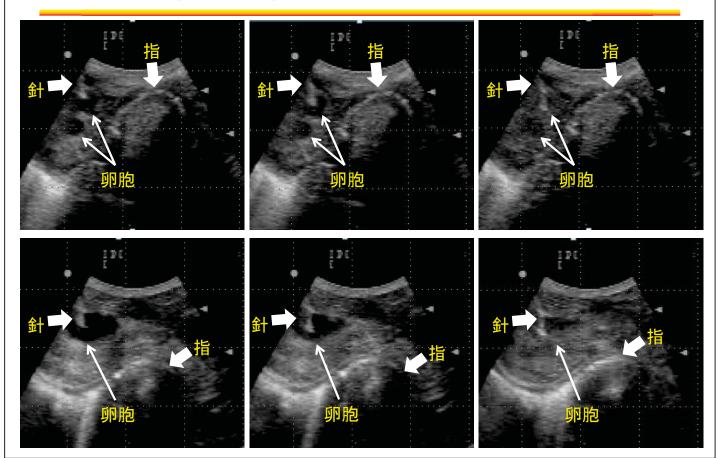
	Increasing rates of produced and transferred OPU-IVF embryos (%)								
Regions	Em	ıbryo product	ion	Embryo transfer					
	Donors	Collected oocytes	Produced embryos	Fresh embryos	Frozen embryos	Total embryos			
Africa	-44.4	-11.3	-42.0	134.0	1071.4	241.5			
Asia	none	none	none	none	none	none			
Europe	17.1	28.6	37.0	28.5	-16.3	12.8			
North America	27.6	17.7	22.9	22.8	58.2	34.4			
Oceania	36.1	23.1	62.0	159.3	-31.7	49.1			
South America	-18.1	-5.6	2.3	2.8	10.9	4.5			
Total	-2.3	0.8	8.7	7.7	22.9	11.4			


Perry G, IETS data retrieval committee, Embryo Technology Newsletter 35(4):8-23, 2017をもとに算出

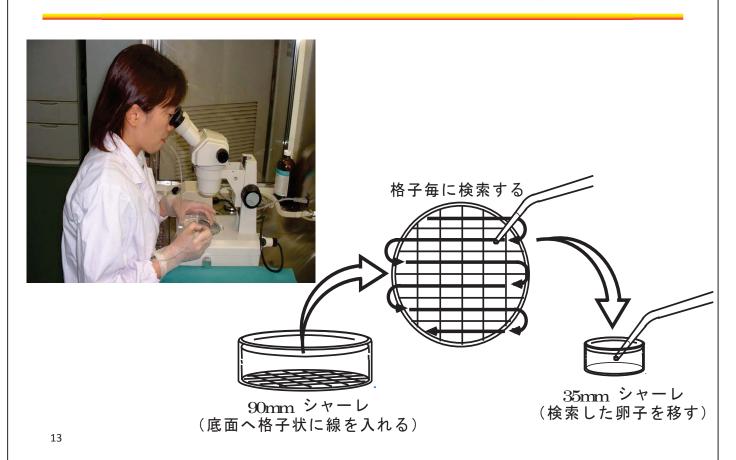

Number of blastocysts/an OPU-IVF session

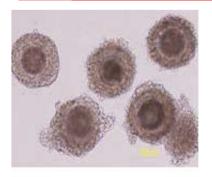
		Treatments of donors										
Name of	None				FSH stimulation							
countries	Da	iry	Be	ef	To	tal	Da	iry	Be	ef	То	tal
countries										blastoc		
	S	ysts	S	ysts	S	ysts	S	ysts	S	ysts	S	ysts
Brazil	25.5	8.9	25.5	8.9	25.5	8.9						
USA	17.2	5.3	20.1	6.5	18.5	5.8						
Argentina	46.3	17.1	21.9	6.5	22.0	6.6						
Canada							9.8	4.1	10.9	5.5	9.8	4.2
Netherlands							9.7	1.8			9.7	1.8
Mexico			10.6	4.9	10.6	4.9						
Peru	8.0	0.5	8.1	0.7	8.0	0.5						
New Zealand	7.8	2.1	9.0	1.6	8.2	1.9			11.3	2.2	11.3	2.2
Panama	15.0	3.4	17.8	5.4	16.2	4.2						
Germany	8.8	1.4	24.6	1.9	9.2	1.4						
Spain	14.5	3.2	9.6	3.6	13.5	3.2	16.4	4.9	9.1	3.7	14.1	4.5
Dominican	19.2	5.0	27.4	8.3	22.1	6.2						
France							8.3	2.4	17.9	8.9	8.7	2.7
Others	5.7	0.8	9.9	2.7	6.9	1.4	6.0	1.8	34.8	3.5	21.2	2.7
Total	18.6	5.8	22.1	7.4	20.1	6.5	9.5	2.7	25.4	4.1	10.8	2.9

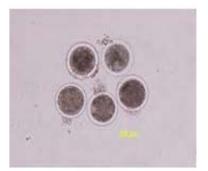
Perry G, IETS data retrieval committee, Embryo Technology Newsletter 35(4):8-23, 2017

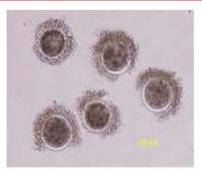

Numbers of transfer on IVP embryos in Japan

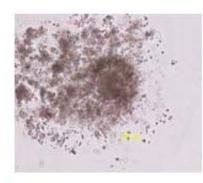
<section-header><section-header><section-header><image><image><image><image><image>


Oocyte aspiration from follicles

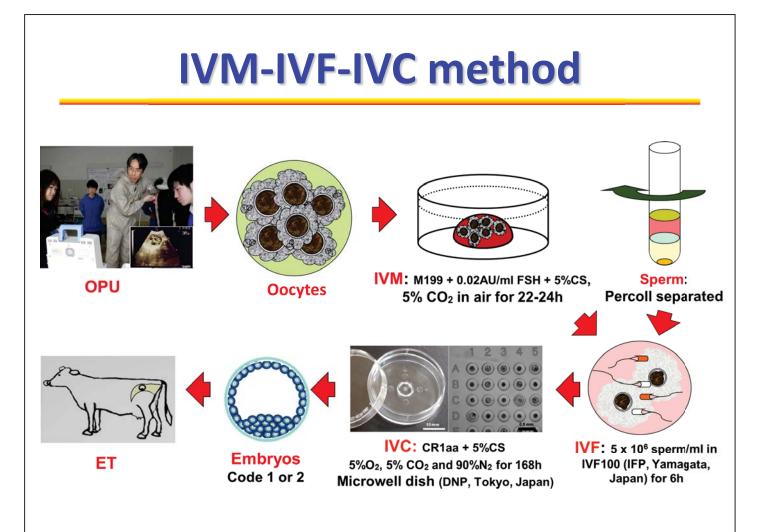

Filtration of aspirate fluid to clean up blood cells


Search the aspirated oocytes


Evaluation of oocyte qualities


Grade 1

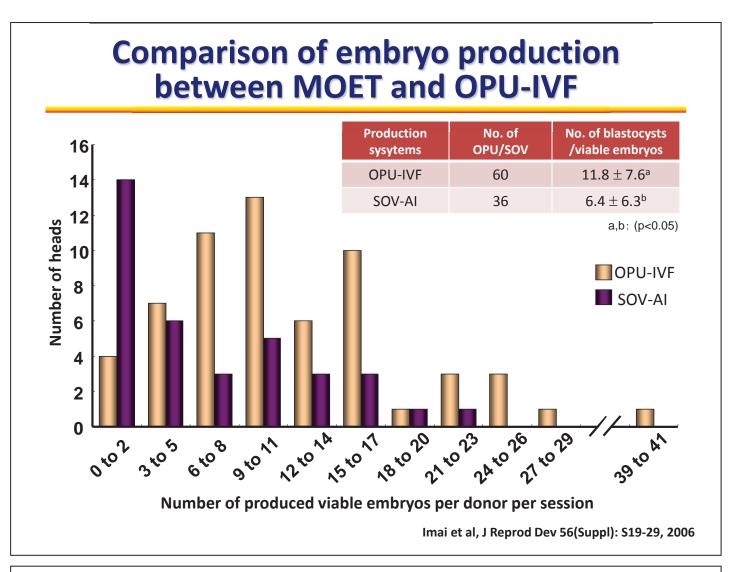
14

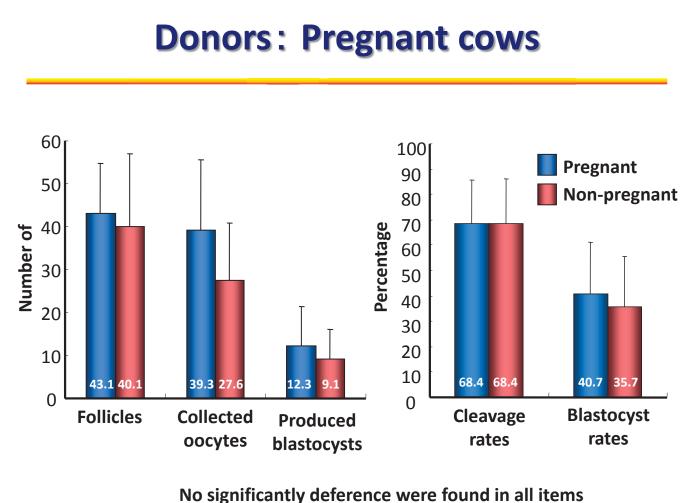

Grade 2

1: 3 or more layers of cumulus cell

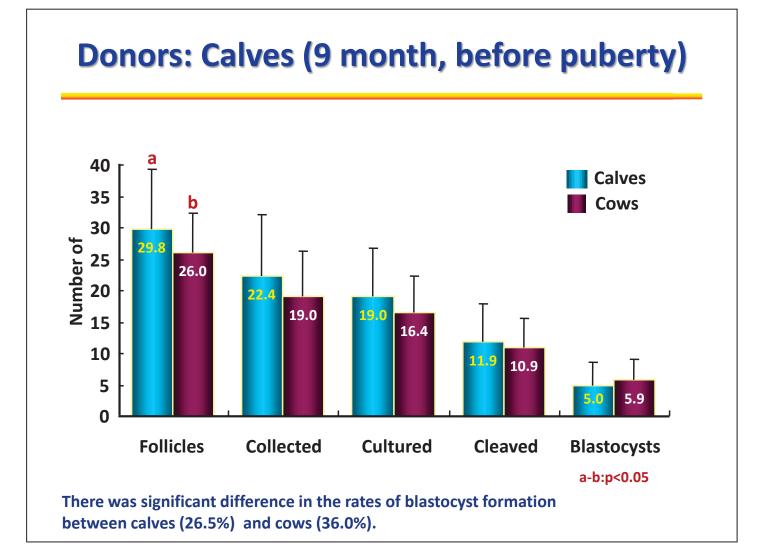
- 2: less than 3 layers of cumulus cell or attached cumulus cell more than 1of 3 around zona pellucida
- 3: denuded oocyte or attached cumulus cell less than 1 of 3 around Zona pellucida
- 4: expanded cumulus cell

Grade 4

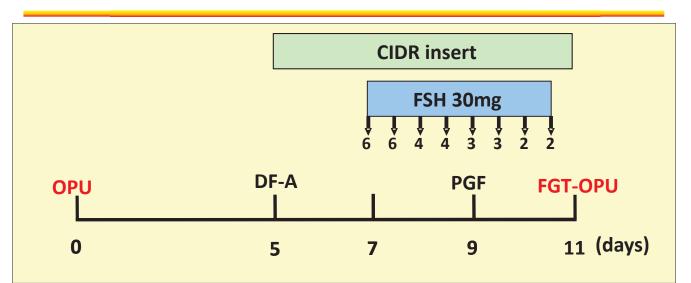


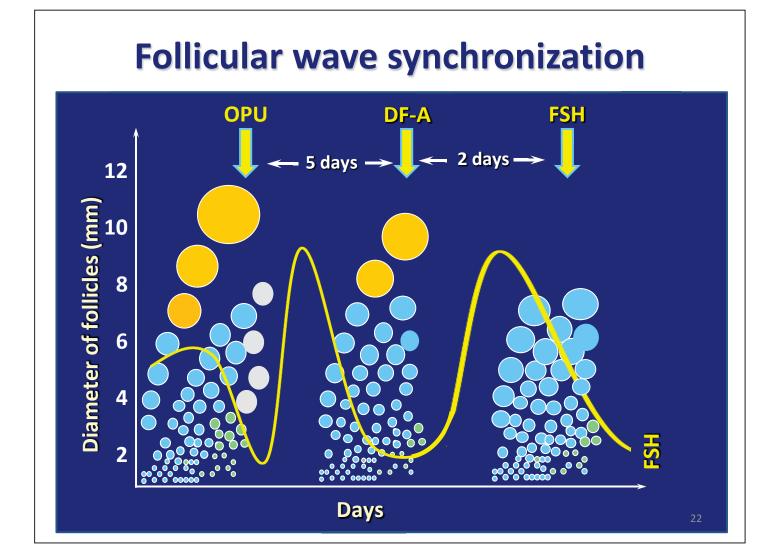

Comparison of embryo production between MOET and OPU-IVF

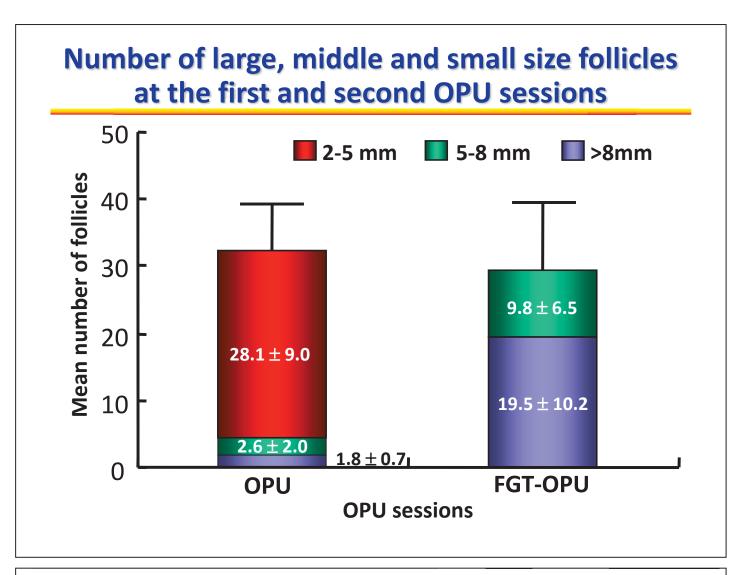
Embryo production system	No. of OPU/MOET sessions	No. of follicles/CL	No. of collected oocytes/ova	No. of produced blastocysts
OPU-IVF	60	$\textbf{43.4} \pm \textbf{16.4}$	36.7 ± 18.3	11.8 ± 7.6 ^a
MOET	36	$\textbf{14.8} \pm \textbf{9.8}$	9.3 ± 8.5	6.4 ± 6.3^{b}

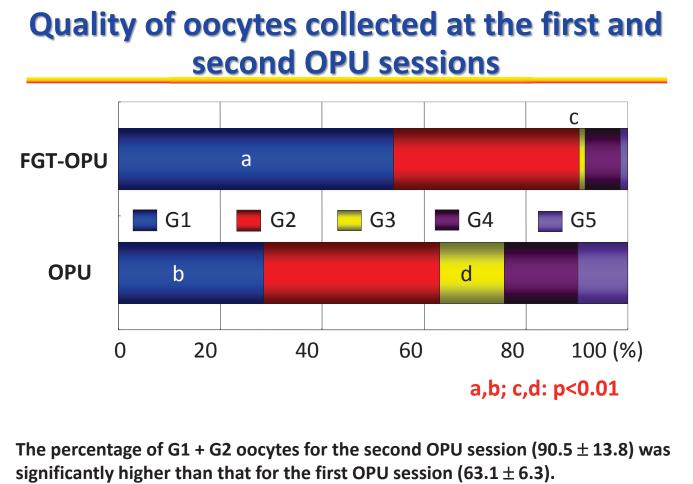

Values (means \pm SD) within the same column with different superscripts differ (P < 0.01). Data from more than 10 days OPU interval were collected.

Imai et al, J Reprod Dev 56(Suppl): S19-29, 2006

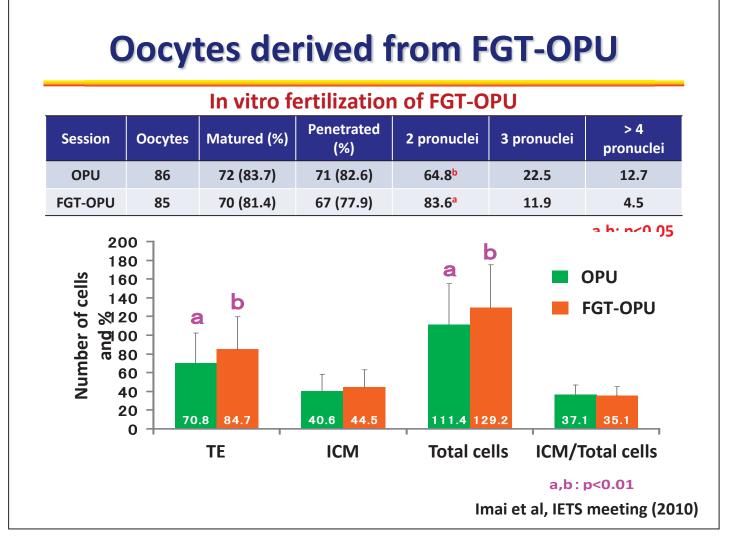



Donors: Reproductive disorders 60 Number of oocytes/blastocysts 50 40 30 20 10 30.0 24.8 7.8 0 **Follicles** Collected Cultured **Blastocysts** oocytes oocytes Data from 17 OPU sessions



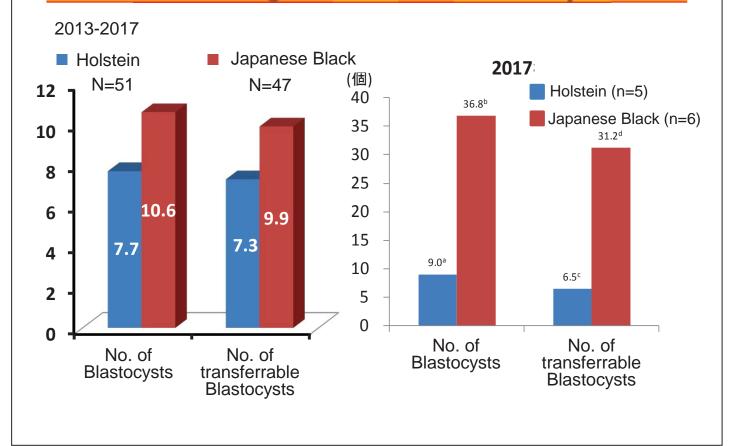

OPU sessions after FGT

To assess the developmental competence of the oocytes collected during the first and second OPU sessions, the oocytes were examined to IVM-IVF-IVC.



Results of embryo production at the first and second OPU sessions

Number/OPU session	OPU	FGT-OPU
Follicles	32.5 ± 6.8	29.3 ± 10.4
Oocytes collected	$\textbf{26.0} \pm \textbf{12.7}$	$\textbf{19.0} \pm \textbf{9.4}$
Oocytes inseminated	$\textbf{20.8} \pm \textbf{10.1}$	$\textbf{18.1} \pm \textbf{9.6}$
Oocytes cleaved	13.1 ± 7.9	$\textbf{14.8} \pm \textbf{9.0}$
Blastocysts	4.3 ± 2.9^{a}	$\textbf{12.8} \pm \textbf{8.7}^{b}$
		a,b:p<0.05



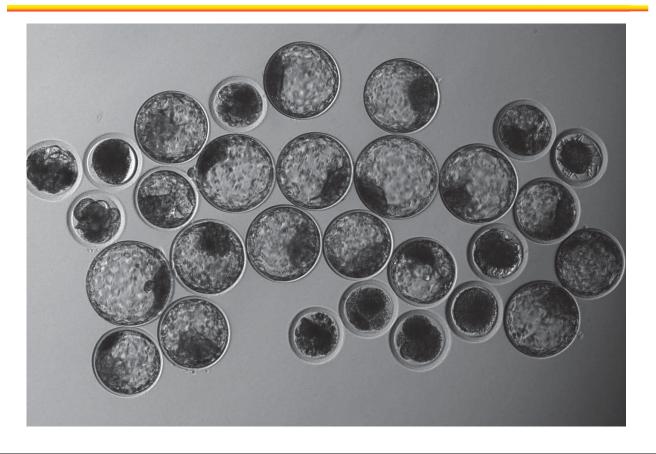
Conception rate of FGT-OPU-IVF embryos

9 12 (41.4)
6 9 (56.3)

Collect in vivo matured oocytes 26h CIDR **DF-A OPU** GnRH **FSH Start** PG 6 6 4 4 3 3 2 2 Day 0 5 6 7 8 9 10 11 30 X-sorted X-sorted Unsorted Number of embryos 60 25 Unsorted Proportions (%) 07 20 15 a 10 С С 5 17.6 14.7 35.3 42.0 42.9 54.0 0 9.5 25.7 25.5 13.9 0 Number of Number of (i) (i) & (ii) (i) To (iv) **Cultured oocytes** Blastocysts

Results of embryo production byOPU-IVF in Rakugo Gakuen University

Embryo production by OPU-IVF in various donors


Donors	No. OPU sessions (intervals)	No. follicles	No. oocytes/ OPU session	No. blastocysts/ OPU session	% blastocyst
Dry cows	60 (>10)	43.4	36.7	11.8	41.6
Pregnant cows	16 (7)	43.1	39.3	12.3	40.7
Reproductive disorder	17 (>10)	36.2	30.0	7.8	29.3
9 months calves	28 (7)	29.8	22.4	5.0	26.0
6 months calves	2 (7)	45.0	32.5	5.0	19.5
FGT treatment	8 (11)	29.3	19.0	12.8	68.1
SOV treatment	8 (>10)	45.6	25.5	13.9	57.2

Summary: embryo production by OPU-IVF

The efficiency of embryo production by OPU-IVF

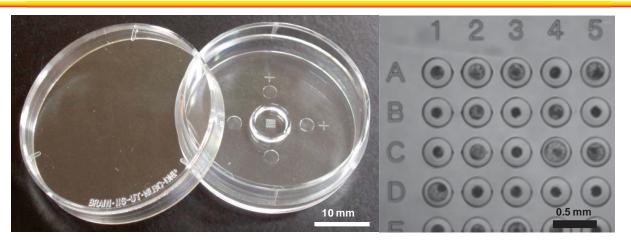
- OPU-IVF is more efficient embryo production system than MOET.
- There is no difference in the reproductive status, if ovaries have enough number of follicles.
- Small follicle < large follicle =/< in vivo matured</p>
- By improving the donor treatments, we were able to produce more than 13 blastocysts per donor cow per session by IVF of OPU-derived in vivo mature oocytes.
- However, there are some problems for embryo quality of blastocysts derived from x-sorted semen.

Which embryos have viability of pregnancy?

Background of selection system

Compare in vitro and in vivo produced embryos

- Low conception rate
- Increase birth weight (large offspring syndrome)
- Extend gestation period
- Low cryotolerance


New technology for in vitro culture

- Individual culture system for IVF embryo
- Time-lapse cinematography (TLC)
- Oxygen consumption of embryo by scanning electrochemical microscope (SECM)

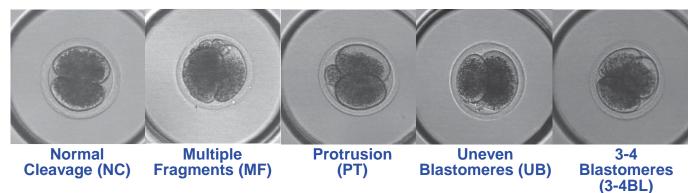
To select the healthy and high viability embryos by TLC, we conducted to relationship between the kinetics of embryo development and their quality.

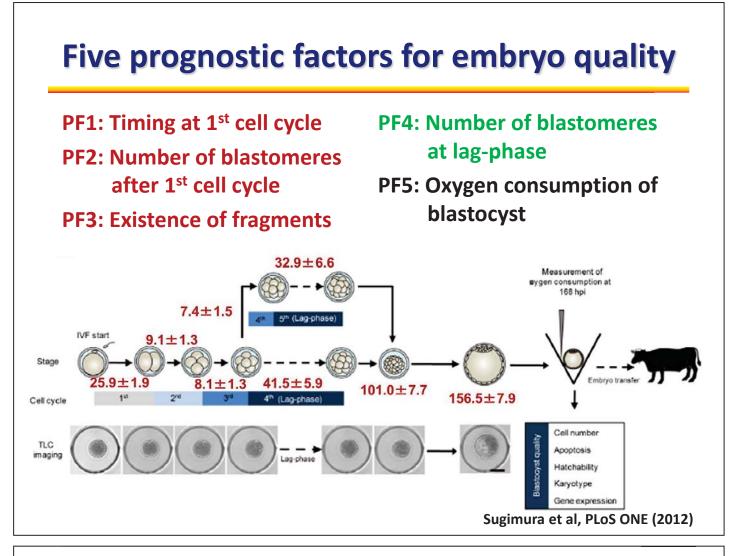
Individual culture in IVF embryo

WOW dish:	35mm culture dish well : 7mm in diameter at the center of dish
	25 microwells (280 μm in diameter and 160 μm in depth, taper=7 $^{\circ}$)

Culture : 125μ l of medium, 25 embryos $5\%O_2$, $5\%CO_2$, $90\%N_2$ and saturated humidity

Monitoring of embryo development by time-lapse cinematography (TLC)


Real-time culture cell monitoring system (Astec, Fukuoka, Japan)


TLC: It take photos every 15min, then take 673 photos until finish the culture for 7 days

Morphology of 1	L st cell cycle	Transfer	Pregnancy (%)	Delivery (%)
Normal	NC	29	15 (51.8) ^a	14 (48.3)
	MF	3	0 (0.0)	0 (0.0)
	PT*	3	1 (33.3)	1 (33.3)
Abnormal	UB*	6	2 (33.3)	2 (33.3)
	3-4BL	18	5 (27.7)	5 (27.7)
	計	29	7 (24.1) ^b	7 (24.1)

*同一の受胎した胚1個を含む

a,b: p<0.05

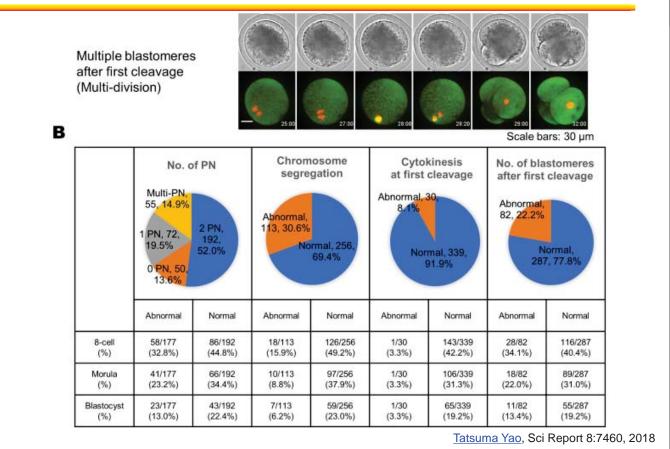
Kinetics of embryo development affect the normality of chromosomes

í —					
	End of first cle	avage		On	set of lag-phase
Timing	Diplodi blastocyst (%)	Number of blastomere	Diploid blastocyst (%)	Number of blastomere	Diploid blastocyst (%)
Fast <27 hpi	58/86 (67.4)	→ 2	55/72 (76.4)	→ 4-5 → 6-8 → 9-16	6/13 (46.2) 22/24 (91.7) 27/35 (77.1)
		→ 3-4	3/14 (21.4)	→ 4-5 → 6-8 → 8-16	0/1 (0) 1/2 (50.0) 2/11 (18.2)
Slow ≥27 hpi	5/25 (20.0)	→ 2	5/16 (31.3)	→ 4-5 → 6-8 → 8-16	1/5 (20.0) 3/9 (33.3) 1/2 (50)
		→ 3-4	0/9 (0)	→ 4-5 → 6-8 → 8-16	0/0 (0) 0/2 (0) 0/7 (0)
				Sug	imura et al, PLoS ONE, 20

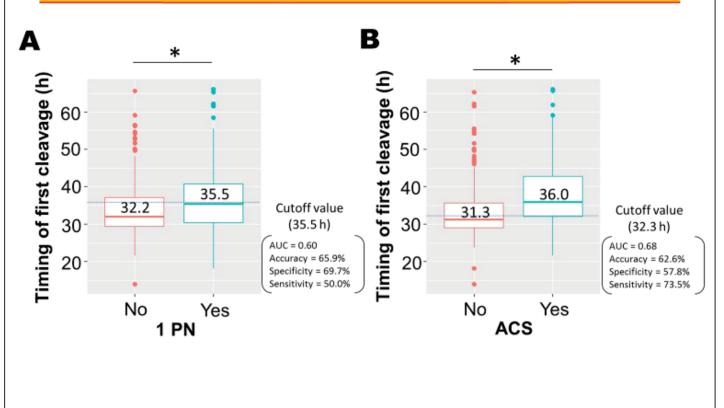
Conception rates in IVF embryos selected by prognostic factors

Combinations	No. of transferred	No. of conceptions	% of conception
Conventional method	52	21	40.4
PF1 and PF2	27	18	66.7*
PF1, PF2, and PF3	24	17	70.8*
PF1, PF2, PF3, and PF4	22	16	72.7*
PF1, PF2, PF3, PF4, and PF5	19	15	78.9**

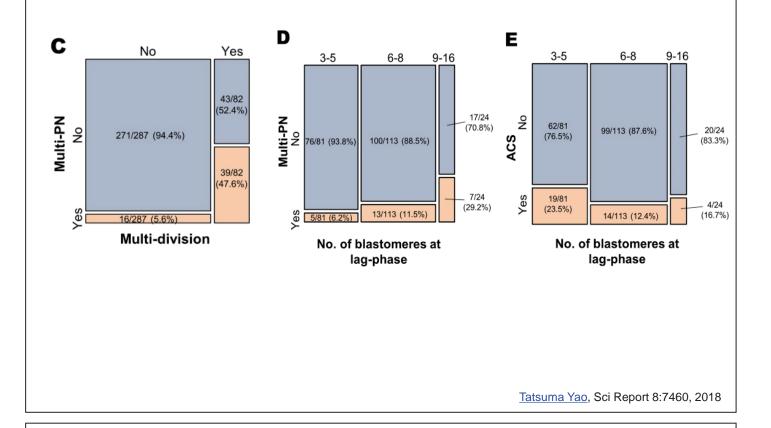
Compared with conventional method: * p<0.05, ** p<0.01

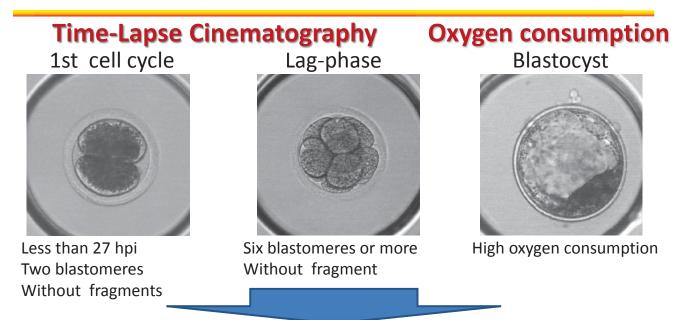

The birth weight was 29.2 \pm 3.3 kg that was close to that derived from AI embryos (28.7 \pm 4.2 kg) and we observed no neonatal overgrowth or death. Sugimura et al, PLoS ONE (2012)

Live cell imaging of abnormal cell division


Multiple pronuclei	
(Multi-PN)	
Abnormal chromosome segregation (ACS)	
segregation (ACS)	
Abnormal	
Cytokinesis	

Tatsuma Yao, Sci Report 8:7460, 2018


Live cell imaging of abnormal cell division


Effect of abnormal cell division on timing of 1st cleavage

A hierarchical relationship between more than multi-division and multi-PN

Summary: Selection of embryos

IVF embryos: high competence of conception and delivery

Time-lapse cinematography could be used great tool for quality assessment of IVF bovine embryos.

Embryo selection system with four factors in the three observations

In case of the first cleavage is earlier (more than 50% cleaved embryos were found until 27 hpi)

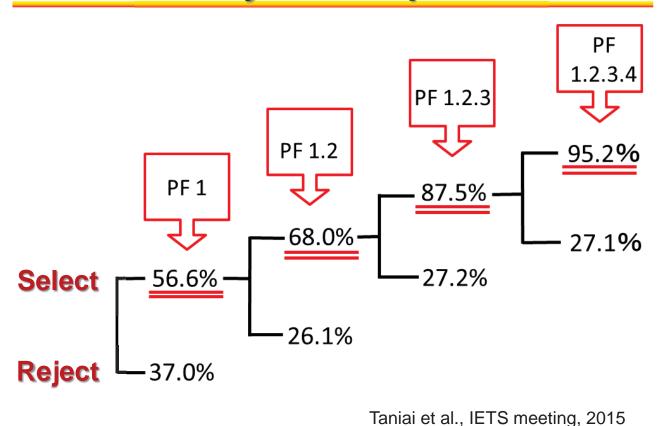
①Timing at first cleavage (less than 27 hpi)

②Two blastomeres after first cleavage

③Absence of fragments after first cleavage at 31 hpi

④Eight or more blastomeres at 55 hpi

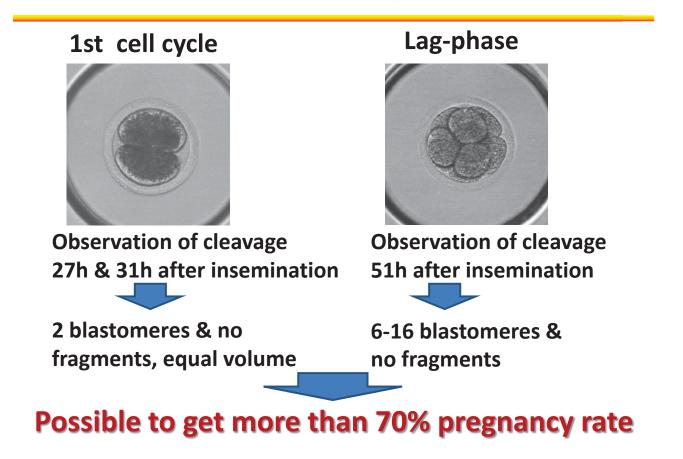
In case of the first cleavage is slower (more than 50% cleaved embryos were found from 27 to 31 hpi)


①Timing at first cleavage (less than 31 hpi)

②Two blastomeres after first cleavage

③Absence of fragments after first cleavage at 31 hpi

④ Eight or more blastomeres at 55 hpi


Effect of prognostic factors in embryo development

Pregnancy rates of selection system

Morphological	No. transfer	No. pregnant	Proportions (%)
Fair	21	12	57.1
good	24	13	54.2
PF 1 to 4	No. transfer	No. pregnant	Proportions (%)
Select	23	17	73.9 ^a
Reject	22	8	36.4 ^b
Reject 1PF	14	6	42.9
Reject 2PFs	8	2	25.0
Total	45	25	55.6
Takayama et al.,2016 in ICAR			

In case of no TLC and oxygen consumption

Conclusions

- 1. Embryo production by OPU-IVF is efficient and stable
- 2. Individual culture and TLC
- 3. Selection of embryos with high competence of pregnancy
- 4. Prognostic factors can be useful for analyze sperm and oocyte quality

Improve the embryo quality, calf production rate and efficient utilization of recipients

Acknowledgements

National Livestock Breeding Center

- Dr. Yutaka Hashiyada Shuji Kobayashi
 - Hideo Matsuda Yoshio Aikawa Masaki Ohtake
- Dr. Koji Misumi Yasushi Inaba

Dai-nippon print

- Dr. Hideshi Hattori
- Dr. Tomonori Akai

The University of Tokyo

Dr. Yasuyuki Sakai

- Dr. Teruo Fujii
- Dr. Yoshitaka Kimura

Rakuno Gakuen University

Dr. Osamu Dochi

- Dr. Masaharu Moriyoshi
- Dr. Masateru Koiwa Mari Takayama Shun Sato

National Institute of Livestock and Grassland Sciences

- Dr. Takashi Nagai
- Dr. Tamas Somfai
- Dr. Satoko Matoba

Tokyo University of Agriculture and Technology

Dr. Satoshi Sugimura

